Evaluation of the environmental impacts of rice paddy production using life cycle assessment: case study in Bangladesh

Abstract

The world is heading towards sustainability. Environmental dimension of sustainability is getting momentum and therefore it is imperative to know the peril through environmental load of a product, process, or activity throughout its life cycle. This study focuses on life cycle assessment (LCA) of rice production in Bangladesh, the fourth highest producer of rice in the world. The objective of this study was to estimate the different environmental impacts from production of paddy rice, in a typical scenario, and identify the environmental hotspots. A life cycle impact assessment has been carried out using ReCiPe methodology, which consists of 18 midpoint impact indicators. The resulting LCA has pointed out the magnitude of impact per kg of paddy produced from the harvested field; a CO2eq emission of 3.15 kg as global warming potential, a Peq emission of 0.00122 kg as freshwater eutrophication, fossil depletion of 0.68 kg oileq, a 1,4-DCB-kg oileq emission of 1.15 kg as human toxicity, a NMVOC emission of 0.016 kg as particulate matter formation, a Neq emission of 0.0154 kg as marine eutrophication and use of 2.97 m3 of water for irrigation purpose. Contribution analysis shows that irrigation and emissions from paddy field are the most environmentally burdening stages across all major impact categories. Manufacture of fertilizer and pesticide also play a significant role in putting environmental load. The application of this study helped to identify improvement opportunities to reduce environmental impacts within this and related production systems, and demonstrated its usefulness in setting priorities to realize these opportunities.

This is a preview of subscription content, log in to check access.

Fig. 1

(Source: FAO 2017)

Fig. 2

(Source: FAO 2017)

Fig. 3
Fig. 4

Notes

  1. 1.

    “The method has been given the name ReCiPe as it provides a ‘recipe’ to calculate life cycle impact category indicators. The acronym also represents the initials of the institutes that were the main contributors to this project and the major collaborators in its design: RIVM and Radboud University, CML, and PRé Consultants” in https://www.pre-sustainability.com/faq/what-does-the-acronym-recipe-mean.

  2. 2.

    Ecoinvent is the world’s leading LCI database which delivers both in terms of transparency and consistency. The ecoinvent database provides a well-documented process data for a large number of products to help make informed choices.

References

  1. Alting L, Hauschild M, Wenzel H (1997) Environmental assessment in product development. Philos Trans R Soc Lond A Math Phys Eng Sci 355(1728):1373–1388

    Article  Google Scholar 

  2. Andersson K, Ohlsson T, Olsson P (1998) Screening life cycle assessment (LCA) of tomato ketchup: a case study. J Clean Prod 6(3):277–288

    Article  Google Scholar 

  3. Anton A, Montero JI, Munoz P, Castells F (2005) LCA and tomato production in Mediterranean greenhouses. Int J Agric Resour Gov Ecol 4(2):102–112

    Google Scholar 

  4. Arunrat N, Pumijumnong N (2017) Practices for reducing greenhouse gas emissions from rice production in Northeast Thailand. Agriculture 7(1):4

    Article  Google Scholar 

  5. Ayres RU, Ayres L (2002) A handbook of industrial ecology. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  6. Basak J (2010) Fertilizer Requirement for Boro Rice Production in Bangladesh. Unnayan Onneshan-The Innovators. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjFosXYoYDUAhXIuo8KHbA-BeMQFggmMAA&url=http%3A%2F%2Fwww.unnayan.org%2Freports%2FLivelihood%2FFertilizer_Requirement_for_Boro_Rice_Production_in_Bangladesh.pdf&usg=AFQjCNG6aEwJ6v_mefBY9pASwQodqxQqrg&sig2=nqWHAOSy1dIVlFgZplGdew

  7. BBS (2012) Yearbook of agricultural statistics. Bangladesh Bureau of Statistics, Bangladesh

    Google Scholar 

  8. Bennett R, Phipps R, Strange A, Grey P (2004) Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment. Plant Biotechnol J 2(4):273–278

    Article  Google Scholar 

  9. Blengini GA, Busto M (2009) The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). J Environ Manag 90(3):1512–1522. http://dx.doi.org/10.1016/j.jenvman.2008.10.006

    Article  Google Scholar 

  10. Breiling M, Tatsuo H, Matsuhashi R (1999) Contributions of rice production to Japanese greenhouse gas emissions applying life cycle assessment as a methodology. Tokyo, Laboratory for Land Resource Sciences, Department of Biological and Environmental Engineering, Graduate School for Agriculture and Life Sciences, The University of Tokyo, 32. http://www.breiling.org/publ/lcaricejap-en.pdf. Accessed 25 May 2017

  11. Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur J Agron 20(3):265–279

    Article  Google Scholar 

  12. Brodt S, Kendall A, Mohammadi Y, Arslan A, Yuan J, Lee IS, Linquist B (2014) Life cycle greenhouse gas emissions in California rice production. Field Crops Res 169:89–98

    Article  Google Scholar 

  13. BRRI (2017) Bangladesh rice knowledge bank: a dynamic source of rice knowledge. http://knowledgebank-brri.org/. Accessed 16 May 2017

  14. BRRI and BBS (2016) Rice export data. Bangladesh Rice Research Institution, Dhaka. http://data.gov.bd/dataset/export-and-import-rice-data-bangladesh. Accessed 25 May 2017

  15. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20(9):1175–1183

    Article  Google Scholar 

  16. Charles R, Jolliet O, Gaillard G, Pellet D (2006) Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agric Ecosyst Environ 113(1):216–225

    Article  Google Scholar 

  17. Chowdhury NT (2010) The relative efficiency of water use in Bangladesh agriculture. Q J Int Agric 49(2):147–164

    Google Scholar 

  18. CIA (2017) The world factbook. Central Intelligence Agency, USA. https://www.cia.gov/library/publications/resources/the-world-factbook/. Accessed 25 May 2017

  19. Consoli F, Allen D, Boustead I, Fava J, Franklin W, Jensen AA, de Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Sieguin J, Vigon B (eds) (1993) Guidelines for life cycle assessment. A code of practice. SETAC Press, Pensacola

    Google Scholar 

  20. Dan J, Krüger M, Frenzel P, Conrad R (2001) Effect of a late season urea fertilization on methane emission from a rice field in Italy. Agric Ecosyst Environ 83(1):191–199

    Article  Google Scholar 

  21. Dasgupta S (2003) Bangladesh pesticide use (Survey Data No. wps3776). World Bank. http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,contentMDK:22302556~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html. Accessed 25 May 2017

  22. de Miranda MS, Fonseca ML, Lima A, de Moraes TF, Rodrigues FA (2015) Environmental impacts of rice cultivation. Am J Plant Sci 6(12):2009

  23. European Environment Agency (2010) Non-methane volatile organic compounds (NMVOC) emissions [indicator specification]. https://www.eea.europa.eu/data-and-maps/indicators/eea-32-non-methane-volatile-1. Accessed 22 June 2017

  24. FAO (2011) Looking ahead in world food and agriculture: perspectives to 2050. Food and Agriculture Organization, Italy. http://www.fao.org/docrep/014/i2280e/i2280e.pdf. Accessed 25 May 2017

  25. FAO (2017) FAOSTAT. http://www.fao.org/faostat/en/#country/16. Accessed 23 May 2017

  26. Finkbeiner M, Ackermann R, Bach V, Berger M, Brankatschk G, Chang YJ, Grinberg M, Lehmann A, Martínez-Blanco J, Minkov N, Neugebauer S, Scheumann R, Schneider L.Wolf K (2014) Challenges in life cycle assessment: an overview of current gaps and research needs. In: Background and future prospects in life cycle assessment. Springer, Dordrecht, pp 207–258. http://dx.doi.org/10.1007/978-94-017-8697-3_7

  27. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Penington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  28. Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?. Food Pol 36:S23–S32. http://dx.doi.org/10.1016/j.foodpol.2010.10.010

    Article  Google Scholar 

  29. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1. https://www.researchgate.net/profile/Mark_Goedkoop/publication/230770853_Recipe_2008/links/09e4150dc068ff22e9000000.pdf. Accessed 25 May 2017

  30. Goossens Y, Geeraerd A, Keulemans W, Annaert B, Mathijs E, De Tavernier J (2017) Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms. Agric Syst 153:81–93

    Article  Google Scholar 

  31. Haes HAU (2002) Industrial Ecology and life cycle assessment. In: Handbook of industrial ecology. Edward Elgar, Cheltenham, pp 138–148

    Google Scholar 

  32. Haes HAU (2004) Life-cycle assessment and developing countries. J Ind Ecol 8(1–2):8–10

    Google Scholar 

  33. Harada H, Kobayashi H, Shindo H (2007) Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci Plant Nutr 53(5):668–677

    Article  Google Scholar 

  34. Hatcho N, Matsuno Y, Kochi K, Nishishita K (2012) Assessment of environment-friendly rice farming through life cycle assessment (LCA). CMU. J Nat Sci 11. http://rac.oop.cmu.ac.th/editcmuj/sites/default/files/pdf/NaturalSciences/Volume%2011,%20Number%201,%20Special%20Issue%20on%20agricultural%20natural%20resources/054%20Journal%202012-2.pdf. Accessed 25 May 2017

  35. Hokazono S, Hayashi K (2015) Life cycle assessment of organic paddy rotation systems using land-and product-based indicators: a case study in Japan. Int J Life Cycle Assess 20(8):1061–1075

    Article  Google Scholar 

  36. Hokazono S, Hayashi K, Sato M (2009) Potentialities of organic and sustainable rice production in Japan from a life cycle perspective. Agron Res 7(1):257–262

    Google Scholar 

  37. Hoque N (2012) Eco-friendly and organic farming in Bangladesh—international classification and local practice. Dissertation. Institut für Agrarsoziologie und Beratungswesen der Justus-Liebig-Universität Gießen, Germany. http://geb.uni-giessen.de/geb/volltexte/2013/8778/pdf/HoqueMdNazmul_2012_06_05.pdf. Accessed 25 May 2017

  38. Huijbregts MA, Steinmann ZJ, Elshout PM, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147. http://dx.doi.org/10.1007/s11367-016-1246-y

  39. i Canals LM, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114(2):226–238

  40. Jiménez-González C, Kim S, Overcash MR (2000) Methodology for developing gate-to-gate life cycle inventory information. Int J Life Cycle Assess 5(3):153–159. http://dx.doi.org/10.1007/BF02978615

    Article  Google Scholar 

  41. Kasmaprapruet S, Paengjuntuek W, Saikhwan P, Phungrassami H (2009) Life cycle assessment of milled rice production: case study in Thailand. Eur J Sci Res 30(2):195–203

    Google Scholar 

  42. Khan MRU, Saleh AFM (2015) Model-based estimation of methane emission from rice fields in Bangladesh. J Agric Eng Biotechnol. http://www.bowenpublishing.com/jaeb/paperInfo.aspx?PaperID=16903. Accessed 25 May 2017

  43. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6. http://dx.doi.org/10.1007/s11103-005-2159-5

  44. MacWilliam S, Wismer M, Kulshreshtha S (2014) Life cycle and economic assessment of Western Canadian pulse systems: the inclusion of pulses in crop rotations. Agric Syst 123:43–53. http://dx.doi.org/10.1016/j.agsy.2013.08.009

    Article  Google Scholar 

  45. Majumdar D (2003) Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Curr Sci 84(10):1317–1326

  46. Mattsson B, Wallén E (2003) Environmental life cycle assessment (LCA) of organic potatoes. Acta Hortic. International Society for Horticultural Science (ISHS), Leuven, pp 427–435. http://dx.doi.org/10.17660/ActaHortic.2003.619.51

  47. McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370(9594):1253–1263. http://dx.doi.org/10.1016/S0140-6736(07)61256-2

    Article  Google Scholar 

  48. Miettinen P, Hämäläinen RP (1997) How to benefit from decision analysis in environmental life cycle assessment (LCA). Eur J Oper Res 102(2):279–294. http://dx.doi.org/10.1016/S0377-2217(97)00109-4

  49. Mitra S, Jain MC, Kumar S, Bandyopadhyay SK, Kalra N (1999) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73(3):177–183

    Article  Google Scholar 

  50. Mogensen L, Kristensen T, Nielsen NI, Spleth P, Henriksson M, Swensson C, Hessle A, Vestergaard M (2015) Greenhouse gas emissions from beef production systems in Denmark and Sweden. Livest Sci 174:126–143

    Article  Google Scholar 

  51. Mosleh MK, Hassan QK, Chowdhury EH (2015) Application of remote sensors in mapping rice area and forecasting its production: a review. Sensors 15(1):769–791

    Article  Google Scholar 

  52. Muthayya S, Hall J, Bagriansky J, Sugimoto J, Gundry D, Matthias D, Prigge S, Moench-Pfanner R, Maberly G (2012) Rice fortification: an emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr Bull 33(4):296–307

    Article  Google Scholar 

  53. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324(1):7–14. http://dx.doi.org/10.1111/nyas.12540

    Article  Google Scholar 

  54. Nemecek T, Bengoa X, Lansche J, Mouron P, Rossi V, Humbert S (2014) Methodological guidelines for the life cycle inventory of agricultural products, version 2.0, July 2014. World Food LCA Database (WFLDB). Quantis and Agroscope, Lausanne

  55. Nemecek T, Jungbluth N, i Canals LM, Schenck R (2016) Environmental impacts of food consumption and nutrition: where are we and what is next? Int J Life Cycle Assess 21(5):607–620. http://dx.doi.org/10.1007/s11367-016-1071-3

  56. Nie Z, Feng GAO, Gong X, Wang Z, Zuo T (2011) Recent progress and application of materials life cycle assessment in China. Progr Nat Sci Mater Int 21(1):1–11

    Article  Google Scholar 

  57. Nienhuis IJ, de Vreede IP (1996) Utility of the environmental life cycle assessment method in horticulture. In: XIII international symposium on horticultural economics 429:531–538. http://www.actahort.org/books/429/429_69.htm. Accessed 25 May 2017

  58. Notarnicola B, Hayashi K, Curran MA, Huisingh D (2012) Progress in working towards a more sustainable agri-food industry. J Clean Prod 28:1–8. http://dx.doi.org/10.1016/j.jclepro.2012.02.007

    Article  Google Scholar 

  59. Notarnicola B, Tassielli G, Renzulli PA, Monforti F (2017) Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (life cycle assessment) approach. J Clean Prod 140(Part 2):455–469. http://dx.doi.org/10.1016/j.jclepro.2016.05.150

    Article  Google Scholar 

  60. OECD/FAO (2016) Agricultural outlook 2016–2025. OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_outlook-2016-en

  61. Önder M, Ceyhan E, Kahraman A (2011) Effects of agricultural practices on environment. Biol Environ Chem 24:28–32

  62. Owen J (2005) Farming claims almost half Earth’s land, new maps show. National Geographic News. http://news.nationalgeographic.com/news/2005/12/1209_051209_crops_map.html. Accessed 25 May 2017

  63. Parveen S, Nakagoshi N (2001) An analysis of pesticide use for rice pest management in Bangladesh. J Int Dev Cooperation 8(1):107–226

    Google Scholar 

  64. Pelletier N (2014). Life cycle assessment in agriculture. Alberta Agriculture and Forestry, Canada, p. 32http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/sag15417/$FILE/LifeCycle-Assessment.pdf

  65. Population Reference Bureau (2016) World population data sheet. Population Reference Bureau, Washington, p 22. http://www.prb.org/pdf16/prb-wpds2016-web-2016.pdf

  66. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema BP, Pennington DW (2004) Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ Int 30(5):701–720

    Article  Google Scholar 

  67. Roy P, Shimizu N, Okadome H, Shiina T, Kimura T (2007) Life cycle of rice: challenges and choices for Bangladesh. J Food Eng 79(4):1250–1255

    Article  Google Scholar 

  68. Roy P, Nei D, Okadome H, Nakamura N, Orikasa T, Shiina T (2008) Life cycle inventory analysis of fresh tomato distribution systems in Japan considering the quality aspect. J Food Eng 86(2):225–233

    Article  Google Scholar 

  69. Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T (2009) A review of life cycle assessment (LCA) on some food products. J Food Eng 90(1):1–10

    Article  Google Scholar 

  70. Soussana JF (2014) Research priorities for sustainable agri-food systems and life cycle assessment. J Clean Prod 73:19–23. http://dx.doi.org/10.1016/j.jclepro.2014.02.061

    Article  Google Scholar 

  71. The World Bank (2010) Employment in agriculture (% of total employment). http://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=BD. Accessed 25 May 2017

  72. Tillman AM, Baumann H (2004) The Hitchhikers guide to LCA. Studentlitteratur AB, Lund

    Google Scholar 

  73. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284. http://dx.doi.org/10.1126/science.1057544

    Article  Google Scholar 

  74. Torrellas M, Antón A, López JC, Baeza EJ, Parra JP, Muñoz P, Montero JI (2012) LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int J Life Cycle Assess 17(7):863–875

    Article  Google Scholar 

  75. Uddin MT, Takeya H (2006) Comparitives study on integrated farming in Bangladesh and other countries. Nagoya University. http://ageconsearch.umn.edu/bitstream/200194/2/Resear_03%20Vol-XXIX.pdf

  76. USDA (2017). World agricultural production. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  77. Van Woerden S (2001) The application of life cycle analysis in glasshouse horticulture. International conference LCA in foods, pp 136–140

  78. Veisi H, Shomohammadi A, Khoshbakht K, Damghani A, Soltani E (2017) Life cycle assessment of potato production semi-mechanized method in Iran: a case study of Markazi province. Iran J Biosyst Eng 47(4):666–659

    Google Scholar 

  79. Watanabe A, Kajiwara M, Tashiro T, Kimura M (1995) Influence of rice cultivar on methane emission from paddy fields. Plant Soil 176(1):51–56

    Article  Google Scholar 

  80. Wei W, Wang S, Chatani S, Klimont Z, Cofala J, Hao J (2008) Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos Environ 42(20):4976–4988. http://dx.doi.org/10.1016/j.atmosenv.2008.02.044

    Article  Google Scholar 

  81. Williams A, Audsley E, Sandars D (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities: Defra project report IS0205. Zu Finden. http://Randd.Defra.Gov.Uk/Default.Aspx. Accessed 25 May 2017

  82. Yoshikawa N, Ikeda T, Amano K, Fumoto T (2012) Life-cycle assessment of ecologically cultivated rice applying DNDC-Rice model. In: 10th international conference on EcoBalance “Challenges and solutions for sustainable society”, Yokohama. http://www.ritsumei.ac.jp/se/rv/amano/pdf/2012EBJ-yoshikawanaoki.pdf. Accessed 25 May 2017

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sujauddin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jimmy, A.N., Khan, N.A., Hossain, M.N. et al. Evaluation of the environmental impacts of rice paddy production using life cycle assessment: case study in Bangladesh. Model. Earth Syst. Environ. 3, 1691–1705 (2017). https://doi.org/10.1007/s40808-017-0368-y

Download citation

Keywords

  • Life cycle assessment
  • Rice paddy
  • Impact evaluation
  • Cultivation
  • Bangladesh