Modeling Earth Systems and Environment

, Volume 3, Issue 2, pp 647–667 | Cite as

Changing dynamics of urban biophysical composition and its impact on urban heat island intensity and thermal characteristics: the case of Hyderabad City, India

  • Srikanta SannigrahiEmail author
  • Shahid Rahmat
  • Suman Chakraborti
  • Sandeep Bhatt
  • Shouvik Jha
Original Article


The biophysical composition; including the green surface cover and moisture dynamics substantially affects the thermal character and Surface Urban Heat Island intensity (SUHII) of an urban area. Therefore, biophysical indices are highly sensitive to the changing process in land use and land cover. Remote sensing based land surface temperature (LST) plays a significant role in analyzing the thermal behavior of urban areas at multiple scales to moderate the urban heat island. In the present study, Greater Hyderabad Municipal Corporation, is taken as a case study to assess biophysical controls on LST and UHI in an urban ecosystem by implementing biophysical indices. Therefore, the cluster of UHI and the proximity to the hotspots were created from spatial statistics. The areal coverage of urban land was increased from 31.2% in 1973 to 62.87% in 2015 with 5.03 sq km year−1 expansion rate. The LST hotspot (H–H) in 2002 observed in the central and the southeast portion of the region, ascribe to the presence of higher thermal anomalies, whereas, the mean LST (°C) of the neighboring region is below than the average. The highest negative correlation between the estimated LST (°C) and the biophysical indices was accounted over aquatic vegetation cover, followed by urban green spaces and built-up urban area, respectively. The simple linear and multiple regression models demonstrated the complex and nonlinear behavior of the UHI and LST with the biophysical components. Therefore, the spatial coherence among the biophysical indices with LST ensembles the necessity of urban greenery and parks within the urban counterpart to mitigate the outdoor thermal discomfort to a reasonable extent.


LST SUHI Biophysical indices Thermal comfort Spatial statistics Urban ecosystem 



SS acknowledges UGC for providing continuous research fellowship to carry out the research at Indian Institute of Technology (IIT), Kharagpur (India). SB would like to acknowledge INSPIRE Fellowship Programme (Award Number: IF131138) funded by Department of Science and Technology (DST, New Delhi) for doctoral research being carried out at the Indian Institute of Technology (IIT), Kharagpur (India). SR thanks the Ministry of Human Resource Development (MHRD, New Delhi) for providing continuous research fellowship for doctoral work being carried out at the Indian Institute of Technology (IIT), Kharagpur (India). SS and SR appreciates the support and encouragement got from Prof. Somnath Sen, Prof. Saikat Kumar Paul and Prof. Joy Sen, Indian Institute of Technology Kharagpur (India) and, SB are thankful to Prof. M. A. Mamtani, Indian Institute of Technology Kharagpur (India).


  1. Amiri R, Weng Q, Alimohammadi A, Alavipanah SK (2009) Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens Environ 113(12):2606–2617. doi: 10.1016/j.rse.2009.07.021 CrossRefGoogle Scholar
  2. Arvidson T (2002) Personal Correspondence, Landsat-7 Senior Systems Engineer, Landsat Project Science Office, Goddard Space Flight Center, Washington, D.CGoogle Scholar
  3. Ayanlade A (2016) Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Model Earth Systems Environ 2(4):1–8. doi: 10.1007/s40808-016-0238-z Google Scholar
  4. Barsi JA, Schott JR, Palluconi FD, Helder DL, Hook SJ, Markham BL et al (2003) Landsat TM and ETM + thermal band calibration. Can J Remote Sens 29(2):141–153CrossRefGoogle Scholar
  5. Bottyaa Z, Unger J (2003) A multiple linear statistical model for estimating the mean maximum urban heat island. Theor Appl Climatol 75(3–4):233–243. Doi: 10.1007/S00704-003-0735-7 CrossRefGoogle Scholar
  6. Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc Ecol 25(1):17–33. doi: 10.1007/s10980-009-9402-4 CrossRefGoogle Scholar
  7. Cao X, Onishi A, Chen J, Imura H (2010) Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc Urban Plan 96(4):224–231. doi: 10.1016/j.landurbplan.2010.03.008 CrossRefGoogle Scholar
  8. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252. doi: 10.1016/S0034-4257(97)00104-1 CrossRefGoogle Scholar
  9. Carlson TN, Traci Arthur S (2000) The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25(1–2):49–65. Doi: 10.1016/S0921-8181(00)00021-7 CrossRefGoogle Scholar
  10. Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9:161–173CrossRefGoogle Scholar
  11. Chander G, Markham B (2003) Revised landsat-5 TM radiometrie calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41(11 PART II):2674–2677. doi: 10.1109/TGRS.2003.818464 CrossRefGoogle Scholar
  12. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903. doi: 10.1016/j.rse.2009.01.007 CrossRefGoogle Scholar
  13. Chen XL, Zhao HM, Li PX, Yin ZY (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146. doi: 10.1016/j.rse.2005.11.016 CrossRefGoogle Scholar
  14. Chudnovsky A, Ben-Dor E, Saaroni H (2004) Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build 36(11):1063–1074. doi: 10.1016/j.enbuild.2004.01.052 CrossRefGoogle Scholar
  15. Chun B, Guldmann J-M (2014) Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc Urban Plan 125:76–88. doi: 10.1016/j.landurbplan.2014.01.016 CrossRefGoogle Scholar
  16. Deng C, Wu C (2013a) A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens Environ 133:62–70. doi: 10.1016/j.rse.2013.02.005 CrossRefGoogle Scholar
  17. Deng C, Wu C (2013b) Estimating very high resolution urban surface temperature using a spectral unmixing and thermal mixing approach. Int J Appl Earth Obs Geoinf 23(1):155–164. doi: 10.1016/j.jag.2013.01.001 CrossRefGoogle Scholar
  18. Deng C, Wu C (2013c) Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sens Environ 131:262–274. doi: 10.1016/j.rse.2012.12.020 CrossRefGoogle Scholar
  19. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678. doi: 10.1126/science.1118160 CrossRefGoogle Scholar
  20. Foley AJ, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  21. Gillies RR, Kustas WP, Humes KS (1997) A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. Int J Remote Sens 18(15):3145–3166. Doi: 10.1080/014311697217026 CrossRefGoogle Scholar
  22. Goward SN, Xue Y, Czajkowski KP (2002) Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sens Environ 79(2–3):225–242CrossRefGoogle Scholar
  23. Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X (2015) Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan 135:1–10. doi: 10.1016/j.landurbplan.2014.11.007 CrossRefGoogle Scholar
  24. He C, Shi P, Xie D, Zhao Y (2010) Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens Lett 1(4):213–221. doi: 10.1080/01431161.2010.481681 CrossRefGoogle Scholar
  25. Ishola AK, Okogbue EC, Adeyeri OE (2016) Dynamics of surface urban biophysical compositions and its impact on land surface thermal field. Model Earth Syst Environ 0(4):1–20. doi: 10.1007/s40808-016-0265-9 Google Scholar
  26. Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482CrossRefGoogle Scholar
  27. Kalnay E, Cai M (2003) Impact of urbanization and land use on climate change. Nature 423:528–531CrossRefGoogle Scholar
  28. Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016) Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model Earth Syst Environ 2(3):1–10. doi: 10.1007/s40808-016-0159-x CrossRefGoogle Scholar
  29. Lambin FF, Ehrlich D (1996) The surface temperature–vegetation index space for land use and land cover change analysis. Int J Remote Sens 17:463–487CrossRefGoogle Scholar
  30. Lambin EF, Ehrlich D (1997) Land-cover changes in Sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61(2):181–200. Doi: 10.1016/S0034-4257(97)00001-1 CrossRefGoogle Scholar
  31. Landsberg HE (1981) The Urban climate. Academic, New YorkGoogle Scholar
  32. Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ 115(12):3249–3263. doi: 10.1016/j.rse.2011.07.008 CrossRefGoogle Scholar
  33. Liu H, Weng Q (2008) Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environ Monit Assess 144(1–3):199–219. doi: 10.1007/s10661-007-9979-5 CrossRefGoogle Scholar
  34. Lu D, Weng Q (2006) Use of impervious surface in urban land-use classification. Remote Sens Environ 102(1–2):146–160. doi: 10.1016/j.rse.2006.02.010 CrossRefGoogle Scholar
  35. Maki M, Ishiahra M, Tamura M (2004) Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens Environ 90:441–450CrossRefGoogle Scholar
  36. Markham BL, Barker JL (1985) Spectral characterization of the LANDSAT Thematic Mapper sensors'. Int J Remote Sens 6(5):697–716CrossRefGoogle Scholar
  37. Oke TR (1987) Boundary layer climates. Routledge, LondonGoogle Scholar
  38. Pielke LA (2005). Land use and climate change. Science 310(November):1625–1626.CrossRefGoogle Scholar
  39. Sahana M, Ahmed R, Sajjad H (2016) Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model Earth Syst Environ 2(2):81. doi: 10.1007/s40808-016-0135-5 CrossRefGoogle Scholar
  40. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2–3):213–224. Doi: 10.1016/S0034-4257(01)00274-7 CrossRefGoogle Scholar
  41. Snyder WC, Wan Z, Zhang Y, Feng Y-Z (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19(14):2753–2774. Doi: 10.1080/014311698214497 CrossRefGoogle Scholar
  42. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440. doi: 10.1016/j.rse.2004.02.003 CrossRefGoogle Scholar
  43. Streutker DR (2003) Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens Environ 85(3):282–289. Doi: 10.1016/S0034-4257(03)00007-5 CrossRefGoogle Scholar
  44. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. doi: 10.1016/S0034-4257(03)00079-8 CrossRefGoogle Scholar
  45. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483. doi: 10.1016/j.rse.2003.11.005 CrossRefGoogle Scholar
  46. Weng Q, Liu H, Lu D (2007) Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst 10(2):203–219. doi: 10.1007/s11252-007-0020-0 CrossRefGoogle Scholar
  47. Xiao H, Weng Q (2007) The impact of land use and land cover changes on land surface Temperature in a karst area of China. J Environ Manage 85(1):245–257. doi: 10.1016/j.jenvman.2006.07.016 CrossRefGoogle Scholar
  48. Xiao X, Shen Z, Qin X (2001) Assessing the potential of vegetation sensor data for mapping snow and ice cover: a normalized difference snow and ice index. Int J Remote Sens 22(13):2479–2487. doi: 10.1080/01431160119766 CrossRefGoogle Scholar
  49. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033. doi: 10.1080/01431160600589179 CrossRefGoogle Scholar
  50. Xu LY, Xie XD, Li S (2013) Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ Pollut 178:102–114. doi: 10.1016/j.envpol.2013.03.006 CrossRefGoogle Scholar
  51. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386. doi: 10.1016/j.rse.2006.09.003 CrossRefGoogle Scholar
  52. Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperatures and NDVI with remote sensing: application to Shanghai Landsat 7 ETM + data. Int J Remote Sens 28(15):3205–3226. doi: 10.1080/01431160500306906 CrossRefGoogle Scholar
  53. Zeng C, Liu Y, Stein A, Jiao L (2015a) Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. Int J Appl Earth Obs Geoinf 34:10–24. doi: 10.1016/j.jag.2014.06.012 CrossRefGoogle Scholar
  54. Zeng C, Zhang M, Cui J, He S (2015b) Monitoring and modeling urban expansion—a spatially explicit and multi-scale perspective. Cities 43:92–103. doi: 10.1016/j.cities.2014.11.009 CrossRefGoogle Scholar
  55. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. doi: 10.1080/01431160304987 CrossRefGoogle Scholar
  56. Zhang Y, Odeh IOA, Han C (2009) Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4):256–264. doi: 10.1016/j.jag.2009.03.001 CrossRefGoogle Scholar
  57. Zhao HZH, Chen XCX (2005) Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In: Proceedings. 2005 IEEE international geoscience and remote sensing symposium, 2005. IGARSS’05, vol 3, pp 1666–1668. doi: 10.1109/IGARSS.2005.1526319
  58. Zhu W, Lű A, Jia S (2013) Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens Environ 130:62–73. doi: 10.1016/j.rse.2012.10.034 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Srikanta Sannigrahi
    • 1
    Email author
  • Shahid Rahmat
    • 1
  • Suman Chakraborti
    • 2
  • Sandeep Bhatt
    • 3
  • Shouvik Jha
    • 4
  1. 1.Department of Architecture and Regional PlanningIndian Institute of TechnologyKharagpurIndia
  2. 2.Center for the Study of Regional Development (CSRD)Jawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Department of Geology and GeophysicsIndian Institute of TechnologyKharagpurIndia
  4. 4.Indian Centre for Climate and Societal Impacts Research (ICCSIR)KachchhIndia

Personalised recommendations