The application of satellite-based model and bi-stable ecosystem balance concept to monitor desertification in arid lands, a case study of Sinai Peninsula

  • Nasem BadreldinEmail author
  • Zisheng Xing
  • Rudi Goossens
Review Article


Desertification is responsible for depleting natural resources in arid lands, which is globally happening in an alarming rate. It is considered as the major environmental threat that affects about 40% of the world dry lands, which are populated by approximately one billion humans. In this paper the main objective is to discuss the recent and past research in monitoring and assessing desertification and land degradation using remote sensing technology and data. Recently, the Bi-stable ecosystem balance becomes a promising framework theory to detect the spatial extent of prime land degradation in arid and semi-arid environments; it is also a potential methodology to recognize the difference between the natural variability and instantaneous/non-instantaneous desertification symptoms in dry lands. The satellite-based models are the future tools for monitoring very precisely desertification development, MODerate resolution Imaging Spectroradiometer (MODIS) satellite images are becoming the best datasets for building regional desertification monitoring algorithms because of its temporal scales (8–16 days). The MODIS Based Disturbance Index (MBDI) algorithm provide accurate information at six different study sites in Sinai Peninsula and showed the seasonal and yearly changes. This application can be used for monitoring decades of desertification development in North Africa, South Europe, and the Middle East, and can be linked to several fields such as agriculture sustainability, environmental conservations, rural development, and economics.


Desertification Remote sensing GIS Bi-stable ecosystem balance Sinai 


  1. Aboelghar M, Ali A-R, Arafat S (2012) Spectral wheat yield prediction modeling using SPOT satellite imagery and leaf area index. Arab J Geosci. doi: 10.1007/s12517-012-0772-6 Google Scholar
  2. Adamo SB, Crews-Meyer KA (2006) Aridity and desertification: exploring environmental hazards in Jáchal, Argentina. Appl Geogr 26:61–85CrossRefGoogle Scholar
  3. Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—A case of predicting potential zones of sustainable groundwater resources. J Hydrol 440–441:75–89. doi: 10.1016/j.jhydrol.2012.03.028 CrossRefGoogle Scholar
  4. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and (DRASTIC). Appl Geogr 23:303–324. doi: 10.1016/j.apgeog.2003.08.007 CrossRefGoogle Scholar
  5. Badreldin N, Goossens R (2013a) A satellite-based disturbance index algorithm for monitoring mitigation strategies effects on desertification change in an arid environment. Mitig Adapt Strat Glob Change 20:263–276. doi: 10.1007/s11027-013-9490-y CrossRefGoogle Scholar
  6. Badreldin N, Goossens R (2013b) Monitoring land use/land cover change using multi-temporal Landsat satellite images in an arid environment: a case study of El-Arish, Egypt. Arab J Geosci 7:1671–1681. doi: 10.1007/s12517-013-0916-3 CrossRefGoogle Scholar
  7. Bastawesy M a., Khalaf FI, Arafat SM (2008) The use of remote sensing and GIS for the estimation of water loss from Tushka lakes, southwestern desert, Egypt. J African Earth Sci 52:73–80. doi: 10.1016/j.jafrearsci.2008.03.006 CrossRefGoogle Scholar
  8. Batty M, Xie Y (1994) Research Article. Modelling inside GIS: Part 1. Model structures, exploratory spatial data analysis and aggregation. Int J Geogr Inf Syst 8:291–307. doi: 10.1080/02693799408902001 CrossRefGoogle Scholar
  9. Bregt AK, Skidmore AK, Nieuwenhuis G (2002) Environmental modelling: issues and discussion. CRC Press, Boca RatonGoogle Scholar
  10. Brown DG, Riolo R, Robinson DT et al (2005) Spatial process and data models: toward integration of agent-based models and GIS. J Geogr Syst 7:25–47. doi: 10.1007/s10109-005-0148-5 CrossRefGoogle Scholar
  11. Buchanan S (2007) Salinity hazard mapping and risk assessment in the Bourke irrigation district. University of New South Wales, SydneyGoogle Scholar
  12. Chavez PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:459–479. doi: 10.1016/0034-4257(88)90019-3 CrossRefGoogle Scholar
  13. Chen J, Zhu X, Vogelmann JE et al (2011) A simple and effective method for filling gaps in Landsat ETM + SLC-off images. Remote Sens Environ 115:1053–1064. doi: 10.1016/j.rse.2010.12.010 CrossRefGoogle Scholar
  14. Choi J-K, Oh H-J, Koo BJ et al (2011) Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecol Model 222:1522–1533. doi: 10.1016/j.ecolmodel.2010.12.008 CrossRefGoogle Scholar
  15. Chowdary VM, Chandran RV, Neeti N et al (2008) Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric Water Manag 95:754–766. doi: 10.1016/j.agwat.2008.02.009 CrossRefGoogle Scholar
  16. Coops NC, Wulder MA, Iwanicka D (2009) Large area monitoring with a MODIS-based disturbance index (DI) sensitive to annual and seasonal variations. Remote Sens Environ 113:1250–1261Google Scholar
  17. D’Odorico P, Bhattachan A, Davis KF et al (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344. doi: 10.1016/j.advwatres.2012.01.013 CrossRefGoogle Scholar
  18. De Freitas DM, Tagliani PRA (2009) The use of GIS for the integration of traditional and scientific knowledge in supporting artisanal fisheries management in southern Brazil. J Environ Manage 90:2071–2080. doi: 10.1016/j.jenvman.2007.08.026 CrossRefGoogle Scholar
  19. Ehlers M (2007) Integration taxonomy and uncertainty. In: Mesev V (ed) Integration of GIS and remote sensing. Wiley, West Sussex, pp 17–42Google Scholar
  20. El-Bana M, Khedr A-H, Van Hecke P, Bogaert J (2002) Vegetation composition of a threatened hypersaline lake (Lake Bardawil), North Sinai. Plant Ecol 163(1):63–75Google Scholar
  21. El-Bana M, Shaltout K, Khalafallah A, Mosallam H (2010) Ecological status of the Mediterranean Juniperus phoenicea L. Relicts in the desert mountains of North Sinai, Egypt. Flora Morphol Distrib Funct Ecol Plants 205:171–178Google Scholar
  22. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201. doi: 10.1016/S0034-4257(01)00295-4 CrossRefGoogle Scholar
  23. Forzieri G, Battistini A, Catani F (2012) ES4LUCC: a GIS-tool for remotely monitoring landscape dynamics. Comput Geosci 49:72–80CrossRefGoogle Scholar
  24. Frihy OE, El-Sayed MK (2012) Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Mitig Adapt Strat Glob Change. doi: 10.1007/s11027-012-9418-y Google Scholar
  25. Ganapuram S, Kumar GTV, Krishna IVM et al (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw 40:506–518. doi: 10.1016/j.advengsoft.2008.10.001 CrossRefGoogle Scholar
  26. Gemitzi A, Tolikas D (2007) (HYDRA) model: simulation of salt intrusion in coastal aquifers using Visual Basic and (GIS). Environ Model Softw 22:924–936. doi: 10.1016/j.envsoft.2006.03.007 CrossRefGoogle Scholar
  27. Ghoneim E, Benedetti M, El-Baz F (2012) An integrated remote sensing and GIS analysis of the Kufrah Paleoriver, Eastern Sahara. Geomorphology 139–140:242–257. doi: 10.1016/j.geomorph.2011.10.025 CrossRefGoogle Scholar
  28. Gilabert MA, Gonzalez-Piqueras J, Garcıa-Haro FJ, Melia J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82:303–310CrossRefGoogle Scholar
  29. Gratani L, Varone L, Ricotta C, Catoni R (2012) Mediterranean shrublands carbon sequestration: environmental and economic benefits. Mitig Adapt Strat Glob Change. doi: 10.1007/s11027-012-9415-1 Google Scholar
  30. Greenwood NH (1997) The Sinai: a physical geography. University of Texas Press, Austin, p 148Google Scholar
  31. Haq M, Akhtar M, Muhammad S, et al (2012) Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. Egypt J Remote Sens Space Sci 15:135–141Google Scholar
  32. Ichoku C, Kahn R, Chin M (2012) Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos Res 111:1–28. doi: 10.1016/j.atmosres.2012.03.007 CrossRefGoogle Scholar
  33. Irons JR, Dwyer JL, Barsi JA (2012) The next Landsat satellite: the Landsat data continuity mission. Remote Sens Environ 122:11–21. doi: 10.1016/j.rse.2011.08.026 CrossRefGoogle Scholar
  34. Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: long term trends and changes. Glob Environ Change 22:823–835Google Scholar
  35. Joshi PN, Maurya DM, Chamyal LS (2013) Morphotectonic segmentation and spatial variability of neotectonic activity along the Narmada–Son Fault, Western India: remote sensing and GIS analysis. Geomorphology 180–181:292–306. doi: 10.1016/j.geomorph.2012.10.023 CrossRefGoogle Scholar
  36. Kassas M (1953) Landforms and plant cover in the Egyptian Desert. Bulletin de la Société de Géographie d’Égypte 26:193–205Google Scholar
  37. Kassas M (1977) Arid and semi-arid lands: problems and prospects. Agro-Ecosystems 3:185–204CrossRefGoogle Scholar
  38. Kassas M (1995) Desertification: a general review. J Arid Environ 30:115–128. doi: 10.1016/S0140-1963(05)80063-1 CrossRefGoogle Scholar
  39. Kassas M, Imam M (1954) Habitat and plant communities in the Egyptian desert. III. The wadi bed ecosystem. J Ecol 42:424–441Google Scholar
  40. Khalifa IH, Arnous MO (2010) Assessment of hazardous mine waste transport in west central Sinai, using remote sensing and GIS approaches: a case study of Um Bogma area, Egypt. Arab J Geosci 5:407–420Google Scholar
  41. Laity J (2008) Deserts and desert environments. Wiley, ChichesterGoogle Scholar
  42. Le Hégarat-Mascle S, Ottlé C, Guérin C (2005) Land cover change detection at coarse spatial scales based on iterative estimation and previous state information. Remote Sens Environ 95:464–479Google Scholar
  43. Le Houerou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185CrossRefGoogle Scholar
  44. Lenton TM (2002) Testing Gaia: the effect of life on earth’s habitability and regulation. Clim Change 52:409–422CrossRefGoogle Scholar
  45. Linstädter A, Baumann G (2012) Abiotic and biotic recovery pathways of arid rangelands: lessons from the high atlas mountains, Morocco. Catena 103:3–15. doi: 10.1016/j.catena.2012.02.002 CrossRefGoogle Scholar
  46. Los SO, Tucker CJ, Anyamba A et al (2002) The biosphere: a global perspective. In: Skidmore A (ed) Environmental modelling with GIS and remote sensing. Taylor & Francis Group, London, pp 70–96CrossRefGoogle Scholar
  47. Lyon JG, Yuan D, Lunetta RS, Elvidge C (1998) A change detection experiment using vegetation indices. Photogram Eng Remote Sens 64:143–150Google Scholar
  48. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3:189–196. doi: 10.1016/j.gsf.2011.10.007 CrossRefGoogle Scholar
  49. Mahmoud S, Reilinger R, Mcclusky S et al (2005) GPS evidence for northward motion of the Sinai Block: implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238:217–224Google Scholar
  50. Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42:7823–7843. doi: 10.1016/j.atmosenv.2008.07.018 CrossRefGoogle Scholar
  51. Martinez Beltran J, Licona Manzur C (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: International salinity forum managing saline soils and water. Riverside Convention Center, Riverside, California, USA, pp 311–314Google Scholar
  52. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: desertification synthesis. World Resources Institute, WashingtonGoogle Scholar
  53. Nagendra H, Lucas R, Honrado JP et al (2012) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Ind 33:45–59. doi: 10.1016/j.ecolind.2012.09.014 CrossRefGoogle Scholar
  54. Nakayama Y, Yanagi T, Yamaguchi S et al (2007) Monitoring of environmental change in Dzungar Basin by the analysis of multi-temporal satellite data sets. Adv Space Res 39:52–59. doi: 10.1016/j.asr.2006.02.045 CrossRefGoogle Scholar
  55. Natural Resources Conservation Service (NRCS) (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. United States Department of Agriculture (USDA), WashingtonGoogle Scholar
  56. Okin GS, D’Odorico P, Archer SR (2009) Impact of feedbacks on Chihuahuan desert grasslands: transience and metastability. J Geophys Res 114:G01004. doi: 10.1029/2008JG000833 CrossRefGoogle Scholar
  57. Ozkan K, Mert A (2011) Ecological land classification and mapping of Yazili Canyon nature park in the Mediterranean region, Turkey. J Environ Eng Landsc Manag 19:296–303. doi: 10.3846/16486897.2011.638214 CrossRefGoogle Scholar
  58. Pahlevan N, Schott JR (2012) Characterizing the relative calibration of Landsat-7 (ETM+) visible bands with Terra (MODIS) over clear waters: the implications for monitoring water resources. Remote Sens Environ 125:167–180. doi: 10.1016/j.rse.2012.07.013 CrossRefGoogle Scholar
  59. Perotto-Baldivieso HL, Ben Wu X, Peterson MJ et al (2011) Flooding-induced landscape changes along dendritic stream networks and implications for wildlife habitat. Landscape Urban Plan 99:115–122Google Scholar
  60. Petrou M, Bosdogianni P (1999) Image processing: the fundamentals. Wiley, ChichesterCrossRefGoogle Scholar
  61. Pradhan S (2001) Crop area estimation using GIS, remote sensing and area frame sampling. Int J Appl Earth Obs Geoinf 3:86–92CrossRefGoogle Scholar
  62. Pueyo Y, Alados CL (2007) Abiotic factors determining vegetation patterns in a semi-arid Mediterranean landscape: different responses on gypsum and non-gypsum substrates. J Arid Environ 69:490–505. doi: 10.1016/j.jaridenv.2006.10.008 CrossRefGoogle Scholar
  63. Rapport DJ, Whitford WG (1999) How ecosystems respond to stress: common properties of arid and aquatic systems. Bioscience 49:193–203CrossRefGoogle Scholar
  64. Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 257:249–260. doi: 10.1023/A:1027326424022 CrossRefGoogle Scholar
  65. Reynolds JF, Stafford-smith DM, Lambin E (2003) Do humans cause deserts? An old problem through the lens of a new framework: the Dahlem desertification paradigm. In: Allsopp N, Palmer AR, Milton SJ et al (eds) The VIIth international rangelands congress. Durban, South Africa, pp 2042–2048Google Scholar
  66. Reynolds JF, Smith DMS, Lambin EF et al (2007) Global desertification: building a science for dryland development. Science 316:847–851. doi: 10.1126/science.1131634 CrossRefGoogle Scholar
  67. Richards JA (2013) Remote sensing digital image analysis: an introduction, 5th edn. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  68. Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480.CrossRefGoogle Scholar
  69. Said R (1962) The Geology of Egypt. Elsevier, Amsterdam, p 377Google Scholar
  70. Santini M, Caccamo G, Laurenti A et al (2010) A multi-component GIS framework for desertification risk assessment by an integrated index. Appl Geogr 30:394–415. doi: 10.1016/j.apgeog.2009.11.003 CrossRefGoogle Scholar
  71. Schepanski K, Tegen I, Macke A (2012) Comparison of satellite based observations of Saharan dust source areas. Remote Sens Environ 123:90–97Google Scholar
  72. Schowengerdt RA (2007) Remote sensing: models and methods for image processing, 3rd edn. Elsevier, Amsterdam, p 558Google Scholar
  73. Siart C, Bubenzer O, Eitel B (2009) Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: a multi-component case study on Mediterranean karst in Central Crete. Geomorphology 112:106–121. doi: 10.1016/j.geomorph.2009.05.010 CrossRefGoogle Scholar
  74. Silva RM, Montenegro SMGL, Santos CAG (2012) Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment. Nat Hazards 62:953–970. doi: 10.1007/s11069-012-0128-2 CrossRefGoogle Scholar
  75. Singh RB, Kumar D (2012) Remote sensing and GIS for land use/cover mapping and integrated land management: case from the middle Ganga plain. Front Earth Sci 6:167–176. doi: 10.1007/s11707-012-0319-x CrossRefGoogle Scholar
  76. Sun Q, Wu Z, Tan J (2011a) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65:1687–1694. doi: 10.1007/s12665-011-1145-2 CrossRefGoogle Scholar
  77. Sun Z, Guo H, Li X et al (2011b) Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. J Appl Remote Sens 5:53501. doi: 10.1117/1.3539767 CrossRefGoogle Scholar
  78. Sutcu EC (2012) Use of GIS to discover potential coalfields in Yatagan–Milas area in Turkey. Int J Coal Geol 98:95–109. doi: 10.1016/j.coal.2012.04.009 CrossRefGoogle Scholar
  79. Thomas DSG (2011) Arid environments: their nature and extent. In: Arid zone geomorphology. Wiley, Hoboken, pp 1–16Google Scholar
  80. Thomson CN, Hardin P (2000) Remote sensing/GIS integration to identify potential low-income housing sites. Cities 17:97–109. doi: 10.1016/S0264-2751(00)00005-6 CrossRefGoogle Scholar
  81. United Nations (2011) Global drylands: a UN system-wide response. United Nations, New YorkGoogle Scholar
  82. United Nations Convention to Combat Desertification (UNCCD) (2012) Background information on desertification and land degradation for World Day to Combat Desertification—17 June. World Day to Combat Desertif. 1.Google Scholar
  83. van der Meer FD, van der Werff HM a., van Ruitenbeek FJ a. et al (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14:112–128. doi: 10.1016/j.jag.2011.08.002 CrossRefGoogle Scholar
  84. Van Westen CJ (2002) Remote sensing and geographic information systems for natural disaster management. In: Skidmore A (ed) Environmental modelling with GIS and remote sensing. Taylor & Francis Group, London, pp 200–226CrossRefGoogle Scholar
  85. Verón SR, Paruelo JM, Oesterheld M (2006) Assessing desertification. J Arid Environ 66:751–763. doi: 10.1016/j.jaridenv.2006.01.021 CrossRefGoogle Scholar
  86. Wasige JE, Groen T a., Smaling E, Jetten V (2013) Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing. Int J Appl Earth Obs Geoinf 21:32–42. doi: 10.1016/j.jag.2012.08.005 CrossRefGoogle Scholar
  87. Weickert J, Ishikawa S, Imiya A (1999) Linear scale-space has first been proposed in Japan. J Math Imaging Vis 10:237–252. doi: 10.1023/A:1008344623873 CrossRefGoogle Scholar
  88. Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New YorkGoogle Scholar
  89. Wessels KJ, Prince SD, Frost PE, van Zyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91:47–67. doi: 10.1016/j.rse.2004.02.005 CrossRefGoogle Scholar
  90. Wu Q, Li H, Wang R et al (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape Urban Plan 78:322–333. doi: 10.1016/j.landurbplan.2005.10.002 CrossRefGoogle Scholar
  91. Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63:517–531. doi: 10.1016/j.jaridenv.2005.03.032 CrossRefGoogle Scholar
  92. Yang J, Weisberg PJ, Bristow N a (2012) Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis. Remote Sens Environ 119:62–71. doi: 10.1016/j.rse.2011.12.004 CrossRefGoogle Scholar
  93. Yeganeh H, jamale Khajedein S, Amiri F, Shariff ARBM (2012) Monitoring rangeland ground cover vegetation using multitemporal MODIS data. Arab J Geosci. doi: 10.1007/s12517-012-0733-0 Google Scholar
  94. Yiran GAB, Kusimi JM, Kufogbe SK (2012) A synthesis of remote sensing and local knowledge approaches in land degradation assessment in the Bawku East District, Ghana. Int J Appl Earth Obs Geoinf 14:204–213. doi: 10.1016/j.jag.2011.09.016 CrossRefGoogle Scholar
  95. Yousif M, Bubenzer O (2013) Integrated remote sensing and GIS for surface water development. Case study: Ras El Hekma area, northwestern coast of Egypt. Arab J Geosci 6:1295–1306.CrossRefGoogle Scholar
  96. Zahran MA (1982) Ecology of the halophytic vegetation of Egypt. In: Sen DN, Rajpurohit KS (eds) Part I: Contributions to the ecology of halophytes. Tasks for vegetation science. Springer, Netherlands, pp 3–20Google Scholar
  97. Zahran MA, Willis AJ (2009) The vegetation of Egypt, 2nd edn. Springer, BerlinGoogle Scholar
  98. Zhou W, Troy A, Grove M (2008) Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors 8:1613–1636. doi: 10.3390/s8031613 CrossRefGoogle Scholar
  99. Zinck JA, López J, Metternicht GI et al (2001) Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 3:43–53CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Soil ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Department of Soil and Water SciencesArish UniversityNorth SinaiEgypt
  3. 3.Fredericton Research and Development CentreAgriculture and Agri-Food CanadaFrederictonCanada
  4. 4.Department of GeographyGhent UniversityGhentBelgium

Personalised recommendations