Advertisement

Geospatial modelling for optimum management of fertilizer application and environment protection

  • Javad Seyedmohammadi
  • Leila Esmaeelnejad
  • Hassan Ramezanpour
Original Article
  • 173 Downloads

Abstract

Soil as an important source, guaranties the plant growth and supplies more than 97% of food need of world. Knowledge of soil spatial variability is important in natural and environment resource management, interpolation and soil sampling design, but requires a considerable amount of geo-referenced data. Soil cation exchange capacity (CEC) is a vital indicator of soil fertility quality and pollutant sequestration capacity. Plants such as rice need to provide their nutrient elements by using fertilizers for much more production in surface unit. For this purpose, it is essential to recognize macro-elements amount in soils and prepare their ideal maps. 247 soil samples were collected from depth 0–30 cm with distance minimum 250 m and maximum 1500 m using a stratified random sampling scheme on central areas of Guilan province located in north of Iran. CEC, total nitrogen, available potassium and phosphorus maps prepared using kriging geostatistical method. Evaluation criteria values of root mean square error (RMSE) and mean absolute error (MAE) derived for potassium 27.84 and 0.106, phosphorus 8.17 and 4.63, total nitrogen 0.059 and 0.025 and CEC 4.06 and 3.09, respectively. Criteria value of RMSE and MAE showed that accuracy of prepared maps was ideal. The fit of the experimental semivariograms to the theoretical models indicated that kriging could successfully interpolate soil variables. Thus, the kriging geostatistical method used on a large scale could accurately evaluate the spatial variability of soil nutrient properties. With regard to soil nitrogen and phosphorus maps, application of more amounts of nitrate and phosphorus fertilizers than their optimum level cause ground waters pollution and environment damages therefore their application must be carried out with high consideration. Potash fertilizers consumption in land with high CEC results its fixation, too. Precise attention to CEC map and on-time fertilizer application can solve this problem. Therefore, accurate notice to different amounts of these parameters in prediction maps, critical and optimum levels can well manage fertilizers application, prevents additional costs to farmer, pollution of ground waters and environment resources.

Keywords

CEC Kriging Nitrogen Paddy soil Phosphorus Potassium 

Notes

Acknowledgements

The authors wish to express their sincere thanks to the Department of soil science, University of Guilan for supporting field studies and samplings. We would also like to thank all the members of the Soil Science Laboratory of Faculty of Agriculture, University of Guilan, for providing the facilities to carry out this work and for their suggestions. The authors are grateful to anonymous reviewers who considerably improved the quality of the manuscript.

References

  1. Akhtar MS, Richards BK, Medrano PA, deGroot M, Steenhuis TS (2003) Dissolved phosphorus from undisturbed soil cores. Soil Sci Soc Am J 67:458–470. doi: 10.2136/sssaj2003.4580 CrossRefGoogle Scholar
  2. Al-Kaisi MM, Yin X, Licht MA (2005) Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric Ecosyst Environ 105:635–647. doi: 10.1016/j.agee.2004.08.002 CrossRefGoogle Scholar
  3. Arauzo M (2017) Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting nitrate vulnerable zones. Sci Total Environ 575:799–812. doi: 10.1016/j.scitotenv.2016.09.139 CrossRefGoogle Scholar
  4. Bodrud-Doza M, Islam AT, Ahmed F, Das S, Saha N, Safiur Rahman M (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30(1):19–40. doi: 10.1016/j.wsj.2016.05.001 CrossRefGoogle Scholar
  5. Buvaneshwari S, Riotte J, Sekhar M, Mohan Kumar MS, Sharma AK, Duprey JL, Audry S, Giriraja PR, Praveenkumarreddy Y, Moger H, Durand P, Braun JJ, Ruiz L (2017) Groundwater resource vulnerability and spatial variability of nitrate contamination: insights from high density tubewell monitoring in a hard rock aquifer. Sci Total Environ 579:838–847. doi: 10.1016/j.scitotenv.2016.11.017 CrossRefGoogle Scholar
  6. Cobo JG, Dercon G, Yekeye T, Chapungu L, Kadzere C, Murwira A, Delve R, Cadisch G (2010) Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level. Geoderma 158:398–411. doi: 10.1016/j.geoderma.2010.06.013 CrossRefGoogle Scholar
  7. Conley DJ, Paerl HW, Robert W, Howarth RW, Donald F, Boesch DF, Seitzinger SP, Havens KE, Christiane Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. doi: 10.1126/science.1167755 CrossRefGoogle Scholar
  8. Davatgar N, Neishabouri MR, Sepaskhah AR (2012) Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173–174:111–118. doi: 10.1016/j.geoderma.2011.12.005 CrossRefGoogle Scholar
  9. Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ungar ED (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676. doi: 10.1038/nature12670 CrossRefGoogle Scholar
  10. Ducci D, Condesso de Melo MT, Preziosi E, Sellerino M, Parrone D, Ribeiro L (2016) Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci Total Environ 569–570:569–584. doi: 10.1016/j.scitotenv.2016.06.184 CrossRefGoogle Scholar
  11. Edwards AC, Withers PJA (2007) Linking phosphorus sources to impacts in different types of water body. Soil Use Manag 23:133–143. doi: 10.1111/j.1475-2743.2007.00110.x CrossRefGoogle Scholar
  12. Firmansyah I, Spiller M, de Ruijter FJ, Carsjens GJ, Zeeman G (2017) Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Sci Total Environ 574:1521–1532. doi: 10.1016/j.scitotenv.2016.08.159 CrossRefGoogle Scholar
  13. Fishman RM, Siegfried T, Raj P, Modi V, Lall U (2011) Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour Res 47:1–15. doi: 10.1029/2011WR010617 CrossRefGoogle Scholar
  14. Fortin MJ, Dale MRT, Hoef JV (2002) Spatial analysis in ecology. In: El-Shaarawi AH, Piegorsch WW (eds), Encyclopedia of environmetrics. Wiley, Chichester, p 2051–2058. doi: 10.1002/9780470057339 Google Scholar
  15. Fu W, Tunney H, Zhang C (2010) Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res 106:185–193. doi: 10.1016/j.still.2009.12.001 CrossRefGoogle Scholar
  16. Garten CTJ, Kanga S, Bricea DJ, Schadta CW, Zhou J (2007) Variability in soil properties at different spatial scales (1 m–1 km) in a deciduous forest ecosystem. Soil Biol Biochem 39:2621–2627. doi: 10.1016/j.soilbio.2007.04.033 CrossRefGoogle Scholar
  17. Hashemi F, Olesen JE, Dalgaard T, Børgesen CD (2016) Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Sci Total Environ 573:608–626. doi: 10.1016/j.scitotenv.2016.08.141 CrossRefGoogle Scholar
  18. Kauwenbergh S, Stewart M, Mikkelsen R (2013) World reserves of phosphate rock: a dynamic and unfolding story. Better Crops 97:18–20. http://www.ipni.net/publication/bettercrops.nsf/0/C3AB0523A890EBC685257BD50055E09A/$FILE/BC3%202013%20-%20p18.pdf
  19. Lin H, Wheeler D, Bell J, Wilding L (2005) Assessment of soil spatial variability at multiple scales. Ecol Model 182:271–290. doi: 10.1016/j.ecolmodel.2004.04.006 CrossRefGoogle Scholar
  20. Liu X, Zhang W, Zhang M, Ficklin DL, Wang F (2009) Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma 152:23–34. doi: 10.1016/j.geoderma.2009.05.022 CrossRefGoogle Scholar
  21. Lou H, Yang S, Zhao C, Wang Z, Shi L, Wu L, Dong G, Cai M, Hao F, Sun Y (2017) Using a nitrogen-phosphorus ratio to identify phosphorus risk factors and their spatial heterogeneity in an intensive agricultural area. Catena 149:426–436. doi: 10.1016/j.catena.2016.10.022 CrossRefGoogle Scholar
  22. Luo C, Gao Y, Zhu B, Wang T (2013) Sprinkler-based rainfall simulation experiments to assess nitrogen and phosphorus losses from a hillslope cropland of purple soil in China. Sustain Water Qual Ecol 1–2:40–47. doi: 10.1016/j.swaqe.2014.03.001 CrossRefGoogle Scholar
  23. Ma X, Li Y, Li B, Han W, Liu D, Gan X (2016) Nitrogen and phosphorus losses by runoff erosion: field data monitored under natural rainfall in three Gorges Reservoir Area, China. Catena 147:797–808. doi: 10.1016/j.catena.2016.09.004 CrossRefGoogle Scholar
  24. McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109(1–2):41–73. doi: 10.1016/S0016-7061(02)00139-8 CrossRefGoogle Scholar
  25. McBratney AB, Mendonca Santos M, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi: 10.1016/S0016-7061(03)00223-4 CrossRefGoogle Scholar
  26. Robinson TP, Metternicht GM (2006) Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric 50:97–108. doi: 10.1016/j.compag.2005.07.003 CrossRefGoogle Scholar
  27. Rossi J, Govaerts A, Vos BD, Verbist B, Vervoort A, Poesen J, Muys B, Deckers J (2009) Spatial structures of soil organic carbon in tropical forests-a case study of Southeastern Tanzania. Catena 77:19–27. doi: 10.1016/j.catena.2008.12.003 CrossRefGoogle Scholar
  28. Ruth B, Lennartz B (2008) Spatial variability of soil properties and rice yield along two catenas in Southeast China. Pedosphere 18(4): 409–420. doi: 10.1016/S1002-0160(08)60032-6 CrossRefGoogle Scholar
  29. Rycewicz-Borecki M, McLean JE, Dupont RR (2017) Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms. Ecol Eng 99:409–416. doi: 10.1016/j.ecoleng.2016.11.020 CrossRefGoogle Scholar
  30. Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197. doi: 10.1191/0309133303pp366ra CrossRefGoogle Scholar
  31. Shi J, Wang H, Xu J, Wu J, Liu X, Zhu H, Yu C (2007) Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environ Geol 52:1–10. doi: 10.1007/s00254-006-0443-6 CrossRefGoogle Scholar
  32. Simpson RJ, Stefanski A, Marshall DJ, Moore AD, Richardson AE (2015) Management of soil phosphorus fertility determines the phosphorus budget of a temperate grazing system and is the key to improving phosphorus efficiency. Agric Ecosyst Environ 212:263–277. doi: 10.1016/j.agee.2015.06.026 CrossRefGoogle Scholar
  33. Sims JT, Kleinman PJA (2005) Managing agricultural phosphorus for environmental protection. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, p 1021–1068. https://dl.sciencesocieties.org/publications/books/pdfs/agronomymonogra/phosph
  34. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10:126–139. doi: 10.1065/espr2002.12.142 CrossRefGoogle Scholar
  35. Soil Survey Staff (2014a). Kellogg soil survey laboratory methods manual. Soil survey investigations report no. 42, Version 5. In: Burt R, Soil Survey Staff (eds) United States Department of Agriculture, Natural Resources Conservation Service. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253871.pdf
  36. Soil Survey Staff (2014b) Keys to soil taxonomy, 12th edn. United States Department of Agriculture, Washington DC. https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download/?cid=stelprdb1252094&ext=pdf
  37. Soons MB, Hefting MM, Dorland E, Lamers LPM, Versteeg C, Bobbink R (2016) Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol Conserv. doi: 10.1016/j.biocon.2016.12.006 Google Scholar
  38. SPSS 24 (2016) Statistical analysis software (Standard Version). SPSS Inc., USAGoogle Scholar
  39. Sunohara MD, Gottschall N, Craiovan E, Wilkes G, Topp E, Frey SK, Lapen DR (2016) Controlling tile drainage during the growing season in Eastern Canadato reduce nitrogen, phosphorus, and bacteria loading to surface water. Agric Water Manag 178:159–170. doi: 10.1016/j.agwat.2016.08.030 CrossRefGoogle Scholar
  40. Telesford-Checkley JM, Mora MA, Grant WE, Boellstorff DE, Provin TL (2017) Estimating the contribution of nitrogen and phosphorus to waterbodies by colonial nesting waterbirds. Sci Total Environ 574:1335–1344. doi: 10.1016/j.scitotenv.2016.08.043 CrossRefGoogle Scholar
  41. Tripathi R, Nayaka AK, Shahid M, Lal B, Gautama P, Raja R, Mohanty S, Kumar A, Panda BB, Sahoob RN (2015) Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 133:128–136. doi: 10.1016/j.catena.2015.05.009 CrossRefGoogle Scholar
  42. Vadas P, Sims JT (2014) Soil fertility: phosphorus in soils. Earth Syst Environ Sci. doi: 10.1016/B978-0-12-409548-9.09116-8 Google Scholar
  43. Wang YQ, Shao MA (2013) Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degrad Dev 24(3):296–304. doi: 10.1002/ldr.1128 CrossRefGoogle Scholar
  44. Wang Y, Zhang X, Huang C (2009) Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150:141–149. doi: 10.1016/j.geoderma.2009.01.021 CrossRefGoogle Scholar
  45. Wang X, Wang Q, Wu C, Liang T, Zheng D, Wei X (2012) A method coupled with remote sensing data to evaluate non-point source pollution in the Xin’anjiang catchment of China. Sci Total Environ 430:132–143. doi: 10.1016/j.scitotenv.2012.04.052 CrossRefGoogle Scholar
  46. Wang J, Wang D, Zhang G, Wang Y, Wang C, Teng Y, Christie P (2014) Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agric Water Manag 141:66–73. doi: 10.1016/j.agwat.2014.04.008 CrossRefGoogle Scholar
  47. Webster R, Oliver MA (2008) Geostatistics for environmental scientists, 2nd edn. Wiley, Brisbane. doi: 10.1002/9780470517277 Google Scholar
  48. Wei JB, Xiao DN, Zeng H, Fu YK (2008) Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environ Geol 53:1663–1672. doi: 10.1007/s00254-007-0773-z CrossRefGoogle Scholar
  49. Wei P, Ouyang W, Hao F, Gao X, Yu Y (2016) Combined impacts of precipitation and temperature on diffuse phosphorus pollution loading and critical source area identification in a freeze-thaw area. Sci Total Environ 553:607–616. doi: 10.1016/j.scitotenv.2016.02.138 CrossRefGoogle Scholar
  50. Zhai Z, Zhao X, Teng Y, Li X, Zhang J, Wu J, Zuo R (2017) Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ Saf 137:130–142. doi: 10.1016/j.ecoenv.2016.11.010 CrossRefGoogle Scholar
  51. Zhang C, McGrath D (2004) Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 119:261–275. doi: 10.1016/j.geoderma.2003.08.004 CrossRefGoogle Scholar
  52. Zhang XY, Sui YY, Zhang XD, Meng K, Herbert SJ (2007) Spatial variability of nutrient properties in black soil of Northeast China. Pedosphere 17:19–29. doi: 10.1016/S1002-0160(07)60003-4 CrossRefGoogle Scholar
  53. Zhang H, Xu MG, Zhang W, He XH (2009) Factors affecting potassium fixation in seven soils under 15-year long-term fertilization. Chin Sci Bull 54(10):1773–1780. doi: 10.1007/s11434-009-0164-9 CrossRefGoogle Scholar
  54. Zhang W, Jin X, Liu D, Lang C, Shan B (2016) Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river: Fuyang River in northern China. J Environ Sci. doi: 10.1016/j.jes.2016.07.004 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Javad Seyedmohammadi
    • 1
  • Leila Esmaeelnejad
    • 2
  • Hassan Ramezanpour
    • 3
  1. 1.Department of Soil Science, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Soil Science, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  3. 3.Department of Soil Science, Faculty of AgricultureUniversity of GuilanRashtIran

Personalised recommendations