Spatial and temporal variation of nitrogen dioxide measurement in the Middle East within 2005–2014

  • Mohammad Reza Mansouri Daneshvar
  • Nasrin Hussein Abadi
Original Article


The present study, aims to assess the spatial and temporal variation of NO2 measurement over the Middle East region within 2005–2014. For this purpose, satellite-based data of the Ozone Monitoring Instrument (OMI) were implemented to measure the NO2 concentrations. The results reveal an average increase of NO2 emission in the Middle East during recent decade. Therefore, the results suggest several hotspots consisted of Tehran–Karaj (Iran), Dubai–Ajman (UAE), Kuwait (Kuwait), Riyadh (KSA), Dammam (KSA), Istanbul–Izmit (Turkey), Doha–Rayyan (Qatar), Manama (Bahrain), Cairo (Egypt), Isfahan (Iran), Lahore (Pakistan), Tashkent (Uzbekistan), Baghdad (Iraq) and Beirut (Lebanon) urban regions, which are the main source of NO2 emissions in decadal scale. This study shows that the remotely sensed data are able to measure and record the spatial and temporal variation of NO2 concentrations as emission inventory documents in the Middle East.


Nitrogen dioxide (NO2) measurement Ozone monitoring instrument (OMI) Spatial and temporal variation Middle East 



Thanks also to anonymous reviewers for suggestions on data interpretations.

Compliance with ethical standards


This study was not funded by any grant.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bechle MJ, Millet DB, Marshall JD (2013) Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmos Environ 69:345–353. doi: 10.1016/j.atmosenv.2012.11.046 CrossRefGoogle Scholar
  2. Beirle S, Platt U, Wenig M, Wagner T (2003) Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources. Atmos Chem Phys 3:2225–2232. doi: 10.5194/acp-3-2225-2003 CrossRefGoogle Scholar
  3. Beirle S, Spichtinger N, Stohl A, Cummins KL, Turner T, Boccippio D, Cooper OR, Wenig M, Grzegorski M, Platt U, Wagner T (2006) Estimating the NOx produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico. Atmos Chem Phys 6:1075–1089CrossRefGoogle Scholar
  4. Boersma KF, Jacob DJ, Bucsela EJ, Perring AE, Dirksen R, Van derA RJ, Yontosca RM, Park RJ, Wenig MO, Bertram TH, Cohen RC (2008) Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico. Atmos Environ 42:4480–4497. doi: 10.1016/j.atmosenv.2008.02.004 CrossRefGoogle Scholar
  5. Bradshaw J, Davis D, Grodzinsky G, Smyth S, Newell R, Sandholm S, Liu S (2000) Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev Geophys 38:61–116. doi: 10.1029/1999RG900015 CrossRefGoogle Scholar
  6. CDIAC, Carbon Dioxide Information Analysis Center (2013) Carbon dioxide emissions time series. U S Dep Energ
  7. Crutzen P, Schmailzl U (1983) Chemical budgets of the stratosphere. Planet Space Sci (DOE) 31:1009–1020. doi: 10.1016/0032-0633(83)90092-2 CrossRefGoogle Scholar
  8. Domínguez-López D, Adame JA, Hernández-Ceballos MA, Vaca F, De la Morena BA, Bolívar JP (2014) Spatial and temporal variation of surface ozone, NO and NO2 at urban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula. Environ Monit Assess 186:5337–5351. doi: 10.1007/s10661-014-3783-9 CrossRefGoogle Scholar
  9. Duncan BN, Yoshida Y, De Foy B, Lamsal LN, Streets D, Lu Z, Pickering KE, Krotkov NA (2013) The observed response of the ozone monitoring instrument (OMI) NO2 column to NOx emission controls on power plants in the United States: 2005–2011. Atmos Environ 81:102–111. doi: 10.1016/j.atmosenv.2013.08.068 CrossRefGoogle Scholar
  10. Elasha BO (2010) Mapping of climate change threats and human development impacts in the Arab region. United Nations development Programme, Arab Human Development Report Res Pap Ser, USA, 51Google Scholar
  11. Hayn M, Beirle S, Hamprecht FA, Platt U, Menze BH, Wagner T (2009) Analysing spatio-temporal patterns of the global NO2-distribution retrieved from GOME satellite observations using a generalized additive model. Atmos Chem Phys 9:6459–6477. doi: 10.5194/acp-9-6459-2009 CrossRefGoogle Scholar
  12. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  13. Hilboll A, Richter A, Burrows JP (2013) Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos Chem Phys 13:4145–4169. doi: 10.5194/acp-13-4145-2013 CrossRefGoogle Scholar
  14. Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42(33):7561–7578. doi: 10.1016/j.atmosenv.2008.05.057 CrossRefGoogle Scholar
  15. IPCC, Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  16. Jacob DJ (1999) Introduction to Atmospheric Chemistry. Princeton University Press, USAGoogle Scholar
  17. Kim SW, Heckel A, McKeen SA, Frost GJ, Hsie EY, Trainer MK, Richter A, Burrows JP, Peckham SE, Grell GA (2006) Satellite-observed US power plant NOx emission reductions and their impact on air quality. Geophys Res Lett 33:L22812. doi: 10.1029/2006GL027749 CrossRefGoogle Scholar
  18. Lamsal LN, Krotkov NA, Celarier EA, Swartz WH, Pickering KE, Bucsela EJ, Gleason JF, Martin RV, Philip S, Irie H, Cede A, Herman J, Weinheimer A, Szykman JJ, Knepp TN (2014) Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations. Atmos Chem Phys 14:11587–11609. doi: 10.5194/acp-14-11587-2014 CrossRefGoogle Scholar
  19. Lee DS, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31:1735–1749. doi: 10.1016/S1352-2310(96)00327-5 CrossRefGoogle Scholar
  20. Lee H, Kim YJ, Jung J, Lee C, Heue KP, Platt U, Hu M, Zhu T (2009) Spatial and temporal variations in NO2 distributions over Beijing, China measured by imaging differential optical absorption spectroscopy. J Environ Manage 90:1814–1823. doi: 10.1016/j.jenvman.2008.11.025 CrossRefGoogle Scholar
  21. Lu Z, Streets DG (2012) Increase in NOx emissions from Indian thermal power plants during 1996–2010: unit-based inventories and multisatellite observations. Environ Sci Technol 46:7463–7470. doi: 10.1021/es300831w CrossRefGoogle Scholar
  22. Madsen C, Gehring U, Eldevik Håberg S, Nafstad P, Meliefste K, Nystad W, Lødrup Carlsen KC, Brunekreef B (2011) Comparison of land-use regression models for predicting spatial NOx contrasts over a three year period in Oslo, Norway. Atmos Environ 45(21):3576–3583. doi: 10.1016/j.atmosenv.2011.03.069 CrossRefGoogle Scholar
  23. Mansouri Daneshvar MR (2016) Climate change facts and statistics in Iran. Report of the environmental challenges of I.R. Iran to UNEA-2 delivering on the 2030 Agenda in Nairobi 2016. Research Institute of Shakhes Pajouh, IranGoogle Scholar
  24. Marshall JD, Nethery E, Brauer M (2008) Within-urban variability in ambient air pollution: comparison of estimation methods. Atmos Environ 42(6):1359–1369. doi: 10.1016/j.atmosenv.2007.08.012 CrossRefGoogle Scholar
  25. Novotny EV, Bechle MJ, Millet DB, Marshall JD (2011) National satellite-based land-use regression: NO2 in the United States. Environ Sci Technol 45(10):4407–4414. doi: 10.1021/es103578x CrossRefGoogle Scholar
  26. Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide levels over China observed from space. Nature 437:129–132. doi: 10.1038/nature04092 CrossRefGoogle Scholar
  27. Russell AR, Valin LC, Bucsela EJ, Wenig MO, Cohen RC (2010) Space-based constraints on spatial and temporal patterns of NOx emissions in California, 2005–2008. Environ Sci Technol 44:3608–3615. doi: 10.1021/es903451j CrossRefGoogle Scholar
  28. SCI, Statistical Center of Iran (2010) Off Rep. Iran Popul.
  29. Seinfeld JH, Pandis SN (1997) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley Interscience, New YorkGoogle Scholar
  30. Solomon S, Portmann RW, Sanders RW, Daniel JS, Madsen W, Bartram B, Dutton EG (1999) On the role of nitrogen dioxide in the absorption of solar radiation. J Geophys Res 104L12047–12058 doi: 10.1029/1999JD900035
  31. Stavrakou T, Muller JF, Boersma KF, De Smedt I, Van derA RJ (2008) Assessing the distribution and growth rates of NOx emission sources by inverting a 10–year record of NO2 satellite columns. Geophys Res Lett 35:L10801. doi: 10.1029/2008GL033521 CrossRefGoogle Scholar
  32. Stohl A, Huntrieser H, Richter A, Beirle S, Cooper OR, Eckhardt S, Forster C, James P, Spichtinger N, Wenig M, Wagner T, Burrows JP, Platt U (2003) Rapid intercontinental air pollution transport associated with a meteorological bomb. Atmos Chem Phys 3:969–985CrossRefGoogle Scholar
  33. Ting W, Pu-Cai W, Hendrick F, Huan Y, Van Roozendael M (2015). The Spatial and Temporal Variability of Tropospheric NO2 during 2005–14 over China Observed by the OMI. Atmos Ocean Sci Lett 8(6):392–396. doi: 10.3878/AOSL20150045 Google Scholar
  34. Uno I, Ohara T, Wakamatsu S (1996) Analysis of wintertime NO2 pollution in the Tokyo Metropolitan area. Atmos Environ 30(5):703–713. doi: 10.1016/1352-2310(95)00177-8 CrossRefGoogle Scholar
  35. Van derA RJ, Peters DHM, Eskes H, Boersma KF, Van Roozendael M, De Smedt I, Kelder HM (2006) Detection of the trend and seasonal variation in tropospheric NO2 over China. J Geophys Res 111:D12317. doi: 10.1029/2005JD006594 CrossRefGoogle Scholar
  36. Wakamatsu S, Uno I, Ohara T (1998) Springtime photochemical Air pollution in osaka: field observation. J Appl Meteorol 37(10):1100–1106. doi: 10.1175/1520-0450(1998)037 CrossRefGoogle Scholar
  37. Wang SW, Zhang Q, Streets DG, He KB, Martin RV, Lamsal LN, Chen D, Lei Y, Lu Z (2012) Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations. Atmos Chem Phys 12:4429–4447. doi: 10.5194/acp-12-4429-2012 CrossRefGoogle Scholar
  38. Wenig MO, Spichtinger N, Stohl A, Held G, Beirle S, Wagner T, Jähne B, Platt U (2003) Intercontinental transport of nitrogen oxide pollution plumes. Atmos Chem Phys 3:387–393CrossRefGoogle Scholar
  39. Wenig MO, Cede AM, Bucsela EJ, Celarier EA, Boersma KF, Veefkind JP, Brinksma EJ, Gleason JF, Herman JR (2008) Validation of OMI tropospheric NO2 column densities using direct-sun mode brewer measurements at NASA Goddard space flight center. J Geophys Res 113:D16S45. doi: 10.1029/2007JD008988 CrossRefGoogle Scholar
  40. Zhang Q, Streets DG, He K, Wang Y, Richter A, Burrows JP, Uno I, Jang CJ, Chen D, Yao Z, Lei Y (2007) NOx emission trends for China, 1995–2004: the view from the ground and the view from space. J Geophys Res 112:D22306. doi: 10.1029/2007JD008684 CrossRefGoogle Scholar
  41. Zheng F, Yu T, Cheng T, Gu X, Guo H (2014) Intercomparison of tropospheric nitrogen dioxide retrieved from Ozone Monitoring Instrument over China. Atmos Pollut Res 5:686–695. doi: 10.5094/APR.2014.078 CrossRefGoogle Scholar
  42. Zyrichidou I, Koukouli ME, Balis DS, Katragkou E, Melas D, Poupkou A, Kioutsioukis I, Van derA R, Boersma FK, Van Roozendael M, Richter A (2009) Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe. Atmos Chem Phys 9:6119–6134. doi: 10.5194/acp-9-6119-2009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mohammad Reza Mansouri Daneshvar
    • 1
  • Nasrin Hussein Abadi
    • 2
  1. 1.Department of Geography and Natural HazardsResearch Institute of Shakhes PajouhIsfahanIran
  2. 2.Department of Physical Geography and ClimatologyUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations