Advertisement

Multivariate analysis and GIS-based soil suitability diagnosis for sustainable intensive agriculture in Beni-Moussa irrigated subperimeter (Tadla plain, Morocco)

  • A. Barakat
  • W. Ennaji
  • A. El Jazouli
  • R. Amediaz
  • F. Touhami
Original Article

Abstract

The aim of this study was to diagnose the agricultural land quality in Beni-Moussa irrigated subperimeter, Tadla plain (Morocco), and to evaluate that whether they are still suitable for sustainable intensive agriculture using GIS and physicochemical analyses. Eight quality indicators, namely soil depth, soil texture, pH, EC, CEC, OC, OM and slope, and were analyzed in 27 topsoil samples (0–20 cm) collected from the study zone at September 2009–2015. GIS approach was used to provide than indicator specific maps and to generate the land suitability for intensive agriculture. The results showed that about 1.69% (1324.38 ha) of studied area are classified in the class ‘excellent suitable’, 17.14% (13449.81 ha) in ‘good suitable’, 75.70% (59393.30 ha) in ‘medium suitable’ and 5.47% (4293.11 ha) in ‘poor suitable’ for sustainable intensive agriculture. These two latter land suitability classes needed some restrictions on agricultural practices and appropriate management to be of good sustainable productivity, without soil deterioration and negative effects on environment. The findings of this study are promising and can be used as a basis for the further scientific works, but they required new investigations and experts’ opinions to evaluate and increase their accuracy.

Keywords

Beni-Moussa subperimeter Soil suitability Indicators GIS Intensive agriculture Sustainability 

Notes

Acknowledgements

Our particular gratitude goes to ORMVAT for their collaboration and for the data that they provided us. We also would like to thank Abdessamad Hilali, doctoral student, for his much technical support.

References

  1. AbdelRahman MA, Natarajan A, Hegde R (2016) Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egypt J Remote Sens Space Sci 19(1):125–141Google Scholar
  2. Aderonke DO, Gbadegesin GA (2013) Spatial variability in soil properties of a continuously cultivated land. Afr J Agric Res 8(5):475–483Google Scholar
  3. Aghzar N, Berdai H, Bellouti A, Soudi B (2002) Pollution nitrique des eaux souterraines au Tadla (Maroc). Revue des sciences de l’eau. J Water Sci 15(2):459–492Google Scholar
  4. Akıncı H, Özalp AY, Turgut B (2013) Agricultural land use suitability analysis using GIS and AHP technique. Comp Electr Agric 97:71–82CrossRefGoogle Scholar
  5. Ali RR, Ageeb GW, Wahab MA (2007) Assessment of soil capability for agricultural use in some areas west of the Nile Delta, Egypt: an application study using spatial analyses. J Appl Sci Res 3(11):1622–1629Google Scholar
  6. Atalay I (2006) The effects of mountainous areas on biodiversity: a case study from the northern Anatolian Mountains and the Taurus Mountains. Grazer Schr Geogr Raumf 41:17–26Google Scholar
  7. Badraoui M (2003) Présentation succincte du TadlaGoogle Scholar
  8. Badraoui M, Merzouk A, Bonn F, Gwyn QHJ, Hinse M (1989) Apport de la télédétection à la cartographie des sols dans les zones arides et semi-arides. IAV Hassan-II/Université de Sherbrooke, Sherbrooke (Québec)Google Scholar
  9. Badraoui M, Soudi B, Lahlou M, Kabbassi M, Aniba K (1998a) Evaluation de la salinité des sols dans le périmètre irrigué des Doukkala: Suivi et diagnostic dans les zones vulnérables. In: Soudi B (ed) Etude de l’impact de l’intensification de la mise en valeur agricole sur la qualité des sols et des eaux: proposition de pratiques rationnelles. Projet d’initiatives propres, AGCD-UCL-IAVGoogle Scholar
  10. Badraoui M, Soudi B, Merzouk A, Farhat A, M’hamdi A (1998b) Changes of soil qualities under irrigation in the Bahira region of Morocco: salinization. Adv GeoEcol 31:503–508Google Scholar
  11. Bandyopadhyay KK, Misra AK, Ghosh PK, Hati KM (2010) Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Till Res 110(1):115–125CrossRefGoogle Scholar
  12. Barakat A, El Baghdadi M, Rais J, Aghezzaf B, Slassi M (2016) Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. J Soil Water Conserv Res 4(4). doi: 10.1007/978-94-007-5684-7_11
  13. Bennett TD, Goodwin AL, Dove MT, et al (2010) Structure and properties of an amorphous metal-organic framework. Phys Rev lett 104(11):115503CrossRefGoogle Scholar
  14. Berdai H, Soudi B, Bellouti A (2004) Contribution à l’étude de la pollution nitrique des eaux souterraines en zones irriguées: Cas du Tadla. Projet INCO-WADEMED. Actes du Séminaire. Modernisation de l’Agriculture Irriguée, 28pGoogle Scholar
  15. Bhagat V (2014) Use of IRS P6 LISS-IV data for land suitability analysis for cashew plantation in hilly zone. Int J Geoinfo 14(3)Google Scholar
  16. Bourguignon C (2006) La destruction des sols par l’agriculture intensive. http://www.les-renseignements-genereux.org/var/fichiers/textes/bourguignon.pdf. Accessed 2 December 2016
  17. Cances AL (2005) Diagnostic des systèmes de production du périmètre irrigué du Tadla (Maroc). Quels sont les facteurs de transformation et de différenciation des exploitations agricoles et leur influence sur leur évolution?. Mémoire d’ingénieur agronome, CNEARC, Montpellier, p 149. http://agritrop.cirad.fr/544079/1/document_544079.pdf. Accessed 2 December 2016
  18. Caravaca F, Barea JM, Figueroa D, Roldán A (2002) Assessing the effectiveness of mycorrhizal inoculation and soil compost addition for enhancing reafforestation with Olea europaea subsp. sylvestris through changes in soil biological and physical parameters. Appl Soil Ecol 20(2):107–118CrossRefGoogle Scholar
  19. Cardoso EJBN, Vasconcellos RLF, Bini D, et al (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola 70(4):274–289CrossRefGoogle Scholar
  20. De la Rosa D, Sobral R (2008) Soil quality and methods for its assessment. In: Land use and soil resources. Springer Netherlands, pp 167–200Google Scholar
  21. DIAEA/SEEN (2008) Direction de l’irrigation et de l’aménagement de l’espace Agricole, Service des Expérimentations, des Essais et de la Normalisation-RabatGoogle Scholar
  22. El Harti A, Lhissou R, Chokmani K, Ouzemou JE, Hassouna M, Bachaoui EM, El Ghmari A (2016) Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int J Appl Earth Observ Geoinfo 50:64–73CrossRefGoogle Scholar
  23. FAO (2003) Theoretical framework for land evaluation. Geoderma 72:165–190Google Scholar
  24. FAO (2007) Land evaluation, towards a revised framework. FAO, RomeGoogle Scholar
  25. FAO (2009) L’agriculture doit changer pour nourrir le monde. Notre-planete.info, http://www.notre-planete.info/actualites/actu_1882_agriculture_nourrir_monde.php. Accessed 2 December 2016
  26. Fetouani S, Sbaa M, Vanclooster M, Bendra B (2008) Assessing ground water quality in the irrigated plain of Triffa (north-east Morocco). Agric Water Manage 95(2):133–142CrossRefGoogle Scholar
  27. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  28. Franzluebbers AJ, Causarano HJ, Norfleet ML (2011) Calibration of the soil conditioning index (SCI) to soil organic carbon in the southeastern USA. Plant Soil 338(1–2):223–232CrossRefGoogle Scholar
  29. Gad AA (2015) Land capability classification of some western desert Oases, Egypt, using remote sensing and GIS. Egypt J Remote Sens Space Sci 18(1):S9–S18Google Scholar
  30. González MEP, Rodríguez MDPG, González-Quiñones V, Ballesta RJ (2006) Spatial variability of soil quality in the surroundings of a saline lake environment. Environ Geol 51(1):143–149CrossRefGoogle Scholar
  31. Laftouhi NE, Vanclooster M, Jalal M, Witam O, Aboufirassi M, Bahir M, Persoons É (2003) Groundwater nitrate pollution in the Essaouira Basin (Morocco). C R Geosci 335(3):307–317CrossRefGoogle Scholar
  32. Lahlou M, Ajerame MM, Bogaert P, Bousetta B (2013) Spatiotemporal variability and mapping of groundwater salinity in Tadla: geostatistical approach. In: Developments in soil salinity assessment and reclamation (pp. 167–182), Springer NetherlandsGoogle Scholar
  33. Legros JP (1996) Cartographies des sols: de l’analyse spatiale à la gestion des territoires (vol 10). PPUR presses polytechniques.Google Scholar
  34. Lionello P, Malanotte P, Boscolo R (2006) Mediterranean climate variability. Elsevier, AmsterdamGoogle Scholar
  35. Mustafa AA, Singh M, Sahoo RN, Ahmed N, Khanna M, Sarangi A, Mishra AK (2011) Land suitability analysis for different crops: a multi criteria decision making approach using remote sensing and GIS. Researcher 3(12):1–24Google Scholar
  36. Omowumi OA, Aderonke DO, Anike OA, Moronke OO (2014) Spatial assessment of soil quality indicators under different agricultural land uses.Google Scholar
  37. Ouzza A, Akdim B (2012) La pollution hydrique au Tadla: Perceptions et réalités.Google Scholar
  38. Panhalkar S (2011) Land capability classification for integrated watershed development by applying remote sensing and GIS techniques. ARPN J Agric Biol Sci 6 (4): 46–55Google Scholar
  39. Prakash TN (2003) Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. MS Theses international institute for geo-information science and earth observation enschede, NetherlandGoogle Scholar
  40. Préfol P (1986) Prodige de l’irrigation au Maroc: le développement exemplaire du Tadla, 1936–1985. Nouvelles Editions LatinesGoogle Scholar
  41. Saleh AM, Belal AB, Mohamed ES (2015) Land resources assessment of El-Galaba basin, South Egypt for the potentiality of agriculture expansion using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 18(1):S19–S30Google Scholar
  42. Schiefer J, Lair GJ, Blum WE (2015) Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production. Inter Soil Water Conserv Res 3(1):42–49CrossRefGoogle Scholar
  43. Schiere JB, Ibrahim MNM, Van Keulen H (2002) The role of livestock for sustainability in mixed farming: criteria and scenario studies under varying resource allocation. Agric Ecosyst Environ 90(2):139–153CrossRefGoogle Scholar
  44. Sulc RM, Tracy BF (2007) Integrated crop–livestock systems in the US Corn Belt. Agron J 99(2):335–345CrossRefGoogle Scholar
  45. Taoufik M, Dafir JE (2005) A study of water quality in lower OumRabiaa Basin, Morocco: speciation of nitrogen and phosphorus. Water Qual Res J Can 40(1):120–129Google Scholar
  46. Teka K, Haftu M (2012) Land suitability characterization for crop and fruit production in midlands of Tigray, Ethiopia. Momona Ethiop J Sci 4(1):64–76Google Scholar
  47. USAID (United States Agency for International Development) 2010 .Moulouya and OumEr-Rbia watersheds: organizational it and management system needs. Submitted to USAID/Morocco, Economic Growth Office—Assistance Objective 3: Reduced barriers to trade and investment.Google Scholar
  48. WRB (2006) World Reference Base for Soil Resources (2006) A Framework for International Classification, Correlation and Communication, FAO Rome, World Soil Resources Reports 103Google Scholar
  49. Yalew SG, van Griensven A, Mul ML, van der Zaag P (2016) Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model Earth Syst Environ 2(2):1–14CrossRefGoogle Scholar
  50. Zhang J, Su Y, Wu J, Liang H (2015) GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput Electron Agric 114:202–211CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • A. Barakat
    • 1
  • W. Ennaji
    • 1
  • A. El Jazouli
    • 1
  • R. Amediaz
    • 2
  • F. Touhami
    • 3
  1. 1.Georessources and Environment Laboratory, Faculty of Sciences and TechniquesSultan Moulay Slimane UniversityBéni-MellalMorocco
  2. 2.ORMVATFkih Ben SalehMorocco
  3. 3.Interdisciplinary Laboratory of Research in Sciences and Technologies, Polydisciplinary FacultySultan Moulay Slimane UniversityBéni-MellalMorocco

Personalised recommendations