Delineation of artificial recharge zones in Mnasra Aquifer (NW, Morocco)

  • Badr Benseddik
  • Elyasse El Mrabet
  • Bouabid El Mansouri
  • Jamal Chao
  • Malika Kili
Original Article

Abstract

The coastal area of Gharb basin containing Mnasra aquifer constitutes the only hydric resource for region in terms of domestic consumption and agricultural demand which does not cease to increase. In addition, there are large drops in the water table especially during the last two decades. Moreover, there is the problem of saline intrusion and an alarming deterioration in its quality, which imposes a major management issue. At this level, we resort to the artificial recharge highlighting a set of techniques, tools and methods that can ensure rationally the sustainability of exploitation despite eventual constraints: growth of population, extension of agricultural perimeters and climate change. In this work, we focus on the identification of potential zones for artificial recharge using numerical model (hydrodynamic), and the analytical model of Glover to localize area, assess the flow, and time needed for the smooth progress of implementation.

Keywords

Artificial recharge Mnasra Numerical model Glover 

References

  1. ABHS (2008a) élaboration du scénario tendanciel pour le bassin de sebou. Technical Report, Agence du Bassin Hydraulique de Sebou, Fes-Morocco (in french)Google Scholar
  2. ABHS (2008b) étude de projection démographique et besoins en eaux. Technical Report, Agence du Bassin Hydraulique de Sebou, Fes- Morocco (in french)Google Scholar
  3. ABHS (2009) étude de modélisation de la nappe du Mnasra. Technical Report, Agence de bassin Hydraulique de Sebou, Fes-Morocco (in french)Google Scholar
  4. Anisha N, Pawan L, Priyanka J, Manish R (2013) Public consultation on artificial aquifer recharge using treated municipal wastewater. Resour Conserv Recycl 70:20–24CrossRefGoogle Scholar
  5. Antonis DK, Katerina M, Georgia D (2012) Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge. J Hydro 416–417:1–11 Google Scholar
  6. Bear J (1979) Hydraulic of groundwater. Mc-Graw-Hill, New YorkGoogle Scholar
  7. Bianchi W C, Haskell E (1975) Field Observations of Transient Ground Water Mounds Produced by Artificial Recharge into an Unconfined Aquifer, U.S. Dep. of agriculture, Agricultural Resources Service. Report ARS W-27.Google Scholar
  8. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142.CrossRefGoogle Scholar
  9. Chalouan A, Michard A (2004) The Alpine Rif Belt (Morocco): a case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl Geophys 61:489–519.CrossRefGoogle Scholar
  10. Clark R, Gonzalez D, Dillon P et al. (2015) Reliability of water supply from stormwater harvesting and managed aquifer recharge with a brackish aquifer in an urbanising catchment and changing climate. Environ Model Softw 72:117–125CrossRefGoogle Scholar
  11. Collin J (2004) Les eaux souterraines Connaissance et gestion. Hermann, brgm éditions, ParisGoogle Scholar
  12. Combe M (1975) Le bassin Gharb-Maamora et les petits bassins septentrionaux des oueds Dradère et Souieire. Ressources en eau du Maroc : Tome 2, Notes et Mémoire, Service Géologique, Rabat- Morocco (in French)Google Scholar
  13. Deepesh M, Madan KJ (2015) GIS-based water balance modeling for estimating regional specific yield and distributed recharge in data-scarce hard-rock regions. J Hydro-Environ Res 9(4):554–568CrossRefGoogle Scholar
  14. Deller P (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316.CrossRefGoogle Scholar
  15. Detay M (1997) La gestion active des aquifères. Masson, Paris (French)Google Scholar
  16. Dillon P, Gale I, Contreras S, Pavelic P, Evans R, Ward J (2009) Managing aquifer recharge and discharge to sustain irrigation livelihoods under water scarcity and climate change. IAHS Publ 330:1–12Google Scholar
  17. DRPE (1994) Etude de modélisation de la nappe côtière du Gharb (Région d’El Mnasra), Technical Report, Direction de la Recherche et de la Planification des Eaux Administration de l’Hydraulique, Rabat-Morocco (in French)Google Scholar
  18. El Mansouri B (1999) Développement d’un Outil et Concepts Pour la Gestion Des Eaux Souterraines: application à L’aquifère Côtier du Gharb, PhD Thesis. Ibn Tofail University, Kenitra-Morocco (French)Google Scholar
  19. El Mrabet E, El Mansouri B, Malika K, Mridekh A and Lahlou F (2015) Programmation de la solution de Glover en deux dimensions pour évaluer la recharge artificielle des aquifers. Houi Blan 2:32–38 (in French)Google Scholar
  20. Faisal KZ, Yousef N, Izrar A, Muhammad N, Muhammad KJ (2015) Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. J Afr Earth Sci 111:156–169CrossRefGoogle Scholar
  21. Fetter CW, Holzmacher RG Jr (1974) Groundwater recharge with treated wastewater. J Water Pollut Control Fed 46:260–270Google Scholar
  22. Flinch J F, Vail P R (1998) Plio-Pleistocene sequence stratigraphy and tectonics of the Gibraltar arc,. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEMP Spec Publ 60:119–208.Google Scholar
  23. Glover RE (1959) The pattern of fresh–water flow in a coastal aquifer. J of Geoph Res 10:1039–1043Google Scholar
  24. Glover RE (1960) Mathematical derivations as pertain to ground-water recharge, U.S. Dep. of agriculture, western soil and water management research branch. Fort Collins, ColoradoGoogle Scholar
  25. Hantush M D (1967) Growth and decay of groundwater-mounds in response to uniform percolation. Water Resour Res 3(1):227–234.CrossRefGoogle Scholar
  26. Jekel M and Gruenheid S (2005) Bank filtration and groundwater recharge for treatment of polluted surface waters. Water Sci Technol Water Supply 5(5):57–66.Google Scholar
  27. Kili M, El Mansouri B, Chao J and Ait Fora A (2006) De nouveaux éléments structuraux du complexe aquifère profond du bassin du Rharb (Maroc): implications hydrogéologiques. Comptes Rendus Geosci 338:1194–1202.CrossRefGoogle Scholar
  28. Killi M, El Mansouri B, Chao J and Ait Fora A (2007) Bilan hydrique des sols et recharge de la nappe profonde de la plaine du Gharb (Maroc). Article Scientifique, Sécheresse 19(2)145–151 (in French)Google Scholar
  29. Le Roy P, Sahabi M, Lahsini S, Mehdi K, Zourarah B (2004) Seismic stratigraphy and cenozoic evolution of the mesetan moroccan atlantic continental shelf. J Afr Earth Sci 39(3–5):385–392CrossRefGoogle Scholar
  30. Le Roy P, Sahabi M, Maad N et al. (2014) 3D architecture of Quaternary sediment along the NW Atlantic Moroccan Rharb continental shelf: a stratal pattern under the dual control of tectonics and climatic variations. Mine Pet Geol 49:129–142CrossRefGoogle Scholar
  31. Maad N, Le Roy, P, Sahabi, MM et al. (2010) The NW Moroccan Atlantic continental shelf and Quaternary deformation at the offshore termination of the southern Rif front. Comptes Rendus Geosci 342(9):731–740.CrossRefGoogle Scholar
  32. Marino MA (1975) Artificial groundwater recharge: rectangular recharging area. J Hydrogeol 26(1–2):29–37Google Scholar
  33. McDonald M G and Harbaugh A W (1988) MODFLOW, A Modular three dimensional finite-difference groundwater flow model: U. S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chapter A1.Google Scholar
  34. Pyne R, David G (1995) Groundwater recharge and wells: a guide to aquifer storage recovery. CRC Press, USAGoogle Scholar
  35. Seiler KP, Gat GR (2007) Groundwater recharge from run-off, infiltration and percolation. In: Singh VP (ed) Water science and technology library, vol. 55. Texas A&M University, Springer, College Station, USAGoogle Scholar
  36. Senanayake I P, Dissanayake DM, Mayadunna B B, Weerasekera WL (2016) An approach to delineate groundwater recharge potential sites in Ambalantota-Sri Lanka using GIS techniques. Geosci Front 7(1):115–124.CrossRefGoogle Scholar
  37. Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834CrossRefGoogle Scholar
  38. Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information system (GIS) in the central highlands of Eritrea. Hydrogeol J 14(5):729–741CrossRefGoogle Scholar
  39. Zouhri L, Gorini C, Lamouroux C, Vachard D, Dakki M (2006) Interprétation hydrogéologique de l’aquifère des bassins sud-rifains (Maroc) : apport de la sismique réflexion’. Comptes Rendus Geosci 335(3) :319–326.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratory of Geosciences of Natural Resources, Hydroinformatic Section, Faculty of SciencesIbn Tofail UniversityKenitraMorocco

Personalised recommendations