Evolutionary Psychological Science

, Volume 3, Issue 2, pp 89–96 | Cite as

Can Contraceptive Pill Affect Future Offspring’s Health? The Implications of Using Hormonal Birth Control for Human Evolution

  • Sheer Birnbaum
  • Gurit E. Birnbaum
  • Tsachi Ein-DorEmail author
Research Article


Resistance to disease is greater for offspring if the parents have dissimilar immune systems, as their pathogen-detection ability is enhanced. Accordingly, women evolved to be sexually attracted to men with a dissimilar immune system, primarily during high-fertility cycle phases. Contraceptive pills, however, reverse women’s preferences, leading them to be attracted to men with a similar immune system. In the present study (N = 192), we compared the health of children born to parents who met while the mother was on the pill with that of children whose parents met when the mother was not on the pill. Results confirmed our predictions, indicating that children to mothers who were on the pill are more infection-prone, require more medical care, suffer from a higher frequency of common sicknesses, and are perceived as generally less healthy than children whose parents met on non-pill circumstances. Results are discussed in light of the current antibiotic world crisis.


Children’s health Contraceptive pills Mate choice Menstrual cycle MHC 


  1. Adler, N. E., & Ostrove, J. M. (1999). Socioeconomic status and health: what we know and what we don’t. Annals of the New York Academy of Sciences, 896(1), 3–15.CrossRefPubMedGoogle Scholar
  2. Aeschlimann, P., Häberli, M., Reusch, T., Boehm, T., & Milinski, M. (2003). Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behavioral Ecology and Sociobiology, 54(2), 119–126.Google Scholar
  3. Alvergne, A., & Lummaa, V. (2010). Does the contraceptive pill alter mate choice in humans? Trends in Ecology & Evolution, 25(3), 171–179.CrossRefGoogle Scholar
  4. Bertram, S. M., Loranger, M. J., Thomson, I. R., Harrison, S. J., Ferguson, G. L., Reifer, M. L.,…Gowaty, P. A. (2016). Linking mating preferences to sexually selected traits and offspring viability: good versus complementary genes hypotheses. Animal Behaviour, 119, 75-86.Google Scholar
  5. Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H., & Sorci, G. (2006). Complex Mhc-based mate choice in a wild passerine. Proceedings of the Royal Society of London B: Biological Sciences, 273(1590), 1111–1116.CrossRefGoogle Scholar
  6. Chaix, R., Cao, C., & Donnelly, P. (2008). Is mate choice in humans MHC-dependent? PLoS Genetics, 4(9), e1000184.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.CrossRefPubMedGoogle Scholar
  8. Feinberg, D., Jones, B., Smith, M. L., Moore, F. R., DeBruine, L. M., Cornwell, R.,…Perrett, D. (2006). Menstrual cycle, trait estrogen level, and masculinity preferences in the human voice. Hormones and Behavior, 49(2), 215-222.Google Scholar
  9. Frost, P. (1994). Preference for darker faces in photographs at different phases of the menstrual cycle: preliminary assessment of evidence for a hormonal relationship. Perceptual and Motor Skills, 79(1), 507–514.CrossRefPubMedGoogle Scholar
  10. Gangestad, S. W., & Cousins, A. J. (2001). Adaptive design, female mate preferences, and shifts across the menstrual cycle. Annual Review of Sex Research, 12(1), 145–185.PubMedGoogle Scholar
  11. Gangestad, S. W., & Thornhill, R. (2008). Human oestrus. Proceedings of the Royal Society of London B: Biological Sciences, 275(1638), 991–1000.CrossRefGoogle Scholar
  12. Hay, A. D., Heron, J., Ness, A., & Team, A. S. (2005). The prevalence of symptoms and consultations in pre-school children in the Avon Longitudinal Study of Parents and Children (ALSPAC): a prospective cohort study. Family Practice, 22(4), 367–374.CrossRefPubMedGoogle Scholar
  13. Hedrick, P. W., & Black, F. L. (1997). HLA and mate selection: no evidence in South Amerindians. The American Journal of Human Genetics, 61(3), 505–511.CrossRefPubMedGoogle Scholar
  14. Idler, E. L., & Benyamini, Y. (1997). Self-rated health and mortality: a review of twenty-seven community studies. Journal of Health and Social Behavior, 38, 21–37.CrossRefPubMedGoogle Scholar
  15. Jacob, S., McClintock, M. K., Zelano, B., & Ober, C. (2002). Paternally inherited HLA alleles are associated with women’s choice of male odor. Nature Genetics, 30(2), 175–179.CrossRefPubMedGoogle Scholar
  16. Jacobsson, B., Ladfors, L., & Milsom, I. (2004). Advanced maternal age and adverse perinatal outcome. Obstetrics & Gynecology, 104(4), 727–733.CrossRefGoogle Scholar
  17. Johnston, V. S., Hagel, R., Franklin, M., Fink, B., & Grammer, K. (2001). Male facial attractiveness: evidence for hormone-mediated adaptive design. Evolution and Human Behavior, 22(4), 251–267.CrossRefGoogle Scholar
  18. Jones, B. C., Perrett, D. I., Little, A. C., Boothroyd, L., Cornwell, R., Feinberg, D.,…Hillier, S. (2005). Menstrual cycle, pregnancy and oral contraceptive use alter attraction to apparent health in faces. Proceedings of the Royal Society of London B: Biological Sciences, 272(1561), 347-354.Google Scholar
  19. Jones, B. C., DeBruine, L. M., Perrett, D. I., Little, A. C., Feinberg, D. R., & Smith, M. J. L. (2008). Effects of menstrual cycle phase on face preferences. Archives of Sexual Behavior, 37(1), 78–84.CrossRefPubMedGoogle Scholar
  20. Jones, J., Mosher, W., & Daniels, K. (2012). Current contraceptive use in the United States, 2006–2010, and changes in patterns of use since 1995. National Health Statistics Reports, 60, 1–25.Google Scholar
  21. Landry, C., Garant, D., Duchesne, P., & Bernatchez, L. (2001). ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proceedings of the Royal Society of London B: Biological Sciences, 268(1473), 1279–1285.CrossRefGoogle Scholar
  22. Little, A. C., Jones, B. C., & Burriss, R. P. (2007). Preferences for masculinity in male bodies change across the menstrual cycle. Hormones and Behavior, 51(5), 633–639.CrossRefPubMedGoogle Scholar
  23. Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40–48. Google Scholar
  24. Neff, B. D., & Pitcher, T. E. (2005). Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Molecular Ecology, 14(1), 19–38.CrossRefPubMedGoogle Scholar
  25. Ober, C., Weitkamp, L. R., Cox, N., Dytch, H., Kostyu, D., & Elias, S. (1997). HLA and mate choice in humans. The American Journal of Human Genetics, 61(3), 497–504.CrossRefPubMedGoogle Scholar
  26. Penn, D., & Potts, W. K. (1998). Untrained mice discriminate MHC-determined odors. Physiology & Behavior, 64(3), 235–243.CrossRefGoogle Scholar
  27. Penton-Voak, I. S., & Perrett, D. I. (2000). Female preference for male faces changes cyclically: further evidence. Evolution and Human Behavior, 21(1), 39–48.CrossRefGoogle Scholar
  28. Penton-Voak, I. S., Perrett, D. I., Castles, D. L., Kobayashi, T., Burt, D. M., Murray, L. K., & Minamisawa, R. (1999). Menstrual cycle alters face preference. Nature, 399(6738), 741–742.CrossRefPubMedGoogle Scholar
  29. Potts, W. K., Manning, C. J., & Wakeland, E. K. (1991). Mating patterns in seminatural populations of mice influenced by MHC genotype.Google Scholar
  30. Puts, D. A. (2005). Mating context and menstrual phase affect women’s preferences for male voice pitch. Evolution and Human Behavior, 26(5), 388–397.CrossRefGoogle Scholar
  31. Puts, D. A. (2006). Cyclic variation in women’s preferences for masculine traits. Human Nature, 17(1), 114–127.CrossRefPubMedGoogle Scholar
  32. Richardson, D. S., Komdeur, J., Burke, T., & Von Schantz, T. (2005). MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proceedings of the Royal Society of London B: Biological Sciences, 272(1564), 759–767.CrossRefGoogle Scholar
  33. Roberts, S. C., Gosling, L. M., Carter, V., & Petrie, M. (2008). MHC-correlated odour preferences in humans and the use of oral contraceptives. Proceedings of the Royal Society of London B: Biological Sciences, 275(1652), 2715–2722.CrossRefGoogle Scholar
  34. Roberts, S. C., Cobey, K. D., Klapilová, K., & Havlíček, J. (2013). An evolutionary approach offers a fresh perspective on the relationship between oral contraception and sexual desire. Archives of Sexual Behavior, 42(8), 1369–1375.CrossRefPubMedGoogle Scholar
  35. Santos, P. S. C., Schinemann, J. A., Gabardo, J., & da Graça Bicalho, M. (2005). New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students. Hormones and Behavior, 47(4), 384–388.CrossRefPubMedGoogle Scholar
  36. Saphire-Bernstein, S., Larson, C. M., Gildersleeve, K. A., Fales, M. R., Pillsworth, E. G., & Haselton, M. G. (2016). Genetic compatibility in long-term intimate relationships: partner similarity at major histocompatibility complex (MHC) genes may reduce in-pair attraction. Evolution and Human Behavior. doi: 10.1016/j.evolhumbehav.2016.09.003.Google Scholar
  37. Thornhill, R., & Gangestad, S. W. (2008). The evolutionary biology of human female sexuality. Oxford: Oxford University Press.Google Scholar
  38. Thornhill, R., Gangestad, S. W., Miller, R., Scheyd, G., McCollough, J. K., & Franklin, M. (2003). Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behavioral Ecology, 14(5), 668–678.CrossRefGoogle Scholar
  39. Wedekind, C., & Füri, S. (1997). Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity? Proceedings of the Royal Society of London B: Biological Sciences, 264(1387), 1471–1479.CrossRefGoogle Scholar
  40. Wedekind, C., Seebeck, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceedings of the Royal Society of London B: Biological Sciences, 260(1359), 245–249.CrossRefGoogle Scholar
  41. World Health Organization. (2015). Antibiotic resistance. Retrieved from
  42. Yamazaki, K., Boyse, E., Mike, V., Thaler, H., Mathieson, B., Abbott, J.,…Thomas, L. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. The Journal of Experimental Medicine, 144(5), 1324-1335.Google Scholar
  43. Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., Thomas, L., & Boyse, E. (1988). Familial imprinting determines H-2 selective mating preferences. Science, 240(4857), 1331–1332.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Sheer Birnbaum
    • 1
  • Gurit E. Birnbaum
    • 1
  • Tsachi Ein-Dor
    • 1
    Email author
  1. 1.Baruch Ivcher School of PsychologyInterdisciplinary Center (IDC) HerzliyaHerzliyaIsrael

Personalised recommendations