Skip to main content
Log in

New Insights on the Effect of Forced Laser-Etched Nucleation on the Unsteady Evolution of Two-Phase Flow in a Beer Glass

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This study investigated the influence of the number of nucleation sites on the evolution of the dissolved CO2 concentration of beer contained in an etched glass comprising 0 to 70 etchings. Four identically shaped glasses were studied, three etched and one non-etched. We followed the temporal evolution of the liquid (i.e., beer) and gaseous (i.e., CO2) phases of the beer for each of them. The gaseous phase is monitored by measuring the evolution of the dissolved CO2 concentration in the beer once poured into the glass. Particle image velocimetry (PIV) techniques are used to quantify the mixing dynamics of the beer during the tasting. The results show that the CO2 concentration decreases approximately 3.7 times faster in the glass with 70 etchings than in the unetched glass. This study suggests a close link between the number of nucleation sites and the release of dissolved CO2 by different mechanisms: bubble bursting, molecular diffusion, and mass convection-diffusion, the latter being increased by liquid mixing mechanisms. On the one hand, too many bubbles will bother the consumer by causing a chemical sting and will quickly deplete the beer in dissolved gas. On the other hand, too few bubbles will not allow conveying the aromas to the surface and the consumer will judge the beer as too bland and not visually flattering, hence the need to find a compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bamforth C (2000) J Inst Brew 106:229–238. https://doi.org/10.1002/j.2050-0416.2000.tb00062.x

    Article  Google Scholar 

  2. Prins JT, Van Marle (1999) Foam formation in beer: some physics behind it. In: Proc Eur Brew Conv Congr Foam Symp. Amsterdam, Verlag Hans Carl, Getränke-Fachverlag: Nürnberg, pp. 26–36

  3. Donadini G, Fumi MD, de Faveri MD (2011) J Inst Brew 117:523–533. https://doi.org/10.1002/j.2050-0416.2011.tb00500.x

    Article  Google Scholar 

  4. Ono M, Hashimoto S, Kakudo Y, Nagami K, Kumada J (1983) J Am Soc Brew Chem 41:19–23. https://doi.org/10.1094/ASBCJ-41-0019

    Article  CAS  Google Scholar 

  5. Liger-Belair G (2005) J Agric Food Chem 53:2788–2802. https://doi.org/10.1021/jf048259e

    Article  CAS  PubMed  Google Scholar 

  6. Clark R, Linforth R, Bealin-Kelly F, Hort J (2011) J Inst Brew 117:74–81. https://doi.org/10.1002/j.2050-0416.2011.tb00446.x

    Article  CAS  Google Scholar 

  7. Meilgaard MC (1982) J Agric Food Chem 30:1009–1017. https://doi.org/10.1021/jf00114a002

    Article  CAS  Google Scholar 

  8. Liger-Belair G, Conreux A, Villaume S, Cilindre C (2013) Food Res Int 54:516–522. https://doi.org/10.1016/j.foodres.2013.07.048

    Article  CAS  Google Scholar 

  9. Tominaga T, Guimbertau G, Dubourdieu D (2003) J Agric Food Chem 51:1016–1020. https://doi.org/10.1021/jf020755k

    Article  CAS  PubMed  Google Scholar 

  10. Shafer NE, Zare RN (1991) Phys Today 44:48–52. https://doi.org/10.1063/1.881294

    Article  Google Scholar 

  11. Polidori G, Beaumont F, Jeandet P, Liger-Belair G (2009) J Vis 12:275–282. https://doi.org/10.1007/BF03181866

    Article  Google Scholar 

  12. Beaumont F, Popa C, Liger-Belair G, Polidori G (2012) JFV. 19 doi:https://doi.org/10.1615/JFlowVis ImageProc.2013005152

  13. Beaumont F, Liger-Belair G, Polidori G (2015) Exp Fluids 56:170. https://doi.org/10.1007/s00348-015-2040-5

    Article  Google Scholar 

  14. Beaumont F, Bogard F, Murer S, Polidori G (2022) Dynamics. 2, 326–335 https://doi.org/10.3390/dynamics2040018

  15. Chandrashekar J, Yarmolinsky D, Von Buchholtz L, Oka Y, Sly W, Ryba NJ et al (2009) Science 326:443–445. https://doi.org/10.1126/science.11746

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunkel T, Hofmann (2010) Angew Chem Int Ed 49:2975–2977. https://doi.org/10.1002/anie.200906978

    Article  CAS  Google Scholar 

  17. Liger-Belair G et al (2008) Anal Chim Acta 621:30–37. https://doi.org/10.1016/j.aca.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  18. Padet J (2005) in Convection thermique et massique: Principes généraux (Techniques de l’Ingénieur, p. 23

  19. Perret DA, Bonhommeau G, Liger-Belair T, Cours A, Alijah (2014) J Phys Chem B 118:1839–1847. https://doi.org/10.1021/jp410998f

    Article  CAS  PubMed  Google Scholar 

  20. Beaumont F, Cilindre C, Abdi E, Maman M, Polidori G (2019) Curr Res Nutr Food Sci J 7:227–235. https://doi.org/10.12944/CRNFSJ.7.1.22

    Article  Google Scholar 

  21. Liger-Belair G, Cilindre C (2021) ACS Omega 6:9672–9679. https://doi.org/10.1021/acsomega.1c00256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beaumont F, Liger-Belair G, Bailly Y, Polidori G (2016) Exp Fluids 57:85. https://doi.org/10.1007/s00348-016-2180-2

    Article  CAS  Google Scholar 

  23. Polidori G, Beaumont F, Jeandet P, Liger-Belair G (2008) J Vis 11:184–184. https://doi.org/10.1007/BF03181703

    Article  Google Scholar 

  24. Buch M, Rakib M, Stambouli (2008) in Transfert de matière - Cinétique du transfert de matière entre deux phases, (Ed. Techniques Ingénieur,

  25. Brogioli D, Vailati A (2000) Phys Rev E 63:012105. https://doi.org/10.1103/PhysRevE.63.012105

    Article  ADS  CAS  Google Scholar 

  26. Beaumont F, Liger-Belair G, Polidori G (2019) Acta Mech 230:213–224. https://doi.org/10.1007/s00707-018-2311-3

    Article  Google Scholar 

  27. Beaumont F, Liger-Belair G, Polidori G (2016) J Food Eng 188:58–65. https://doi.org/10.1016/j.jfoodeng.2016.05.012

    Article  Google Scholar 

  28. Saint-Eve et al (2010) Food Quality and Preference. 21, 1026–1033 https://doi.org/10.1016/j.foodqual.2010.05.021

  29. Pozo-Bayón M, Santos M, Martín-Álvarez PJ, Reineccius G (2009) Flavour Fragr J 24:226–233. https://doi.org/10.1002/ffj.1934

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Beaumont.

Ethics declarations

Compliance with Ethical Standards

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaumont, F., Bogard, F., Murer, S. et al. New Insights on the Effect of Forced Laser-Etched Nucleation on the Unsteady Evolution of Two-Phase Flow in a Beer Glass. Exp Tech 48, 31–39 (2024). https://doi.org/10.1007/s40799-023-00644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-023-00644-2

Keywords

Navigation