Skip to main content
Log in

Thermal Conductivity Measurement of a Polymer Material Using a Steady-State Temperature Field

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

The aim of this work is to measure the thermal conductivity of nylon 66, using a steady-state temperature field. To this end, an experimental apparatus was designed to provide the fundamental conditions for one-dimensional heat conduction, under steady state. A heat flux sensor was placed on the center of the upper face to measure a constant heat flux supplied by electrical resistance. Two type-k thermocouples were positioned to measure the temperature drop between the plate faces. Then, these measures are substituted into a mathematical model to determine the thermal conductivity of the material under analysis. The uncertainty assessment using the Monte Carlo method indicates low dispersion of the thermal conductivity, about 2.00%, at a confidence level of 95.45%. This indicates a good precision of the experimental apparatus developed, enabling its application with other non-conductor materials, when the conditions established in the mathematical modelling are strictly followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Science Publications, Oxford

    Google Scholar 

  2. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J Appl Phys. https://doi.org/10.1063/1.1728417

  3. Perkins RA, Huber ML, Assael MJ (2022) Measurement and Correlation of the Thermal Conductivity of 1,1,1,2,2,3,3-Heptafluoro-3-methoxypropane (RE-347mcc). Int J Thermophys. https://doi.org/10.1007/s10765-021-02941-7

  4. Fernandes AP, Santos MB, Guimarães G (2015) An analytical transfer function method to solve inverse heat conduction problems. Appl Math Model. https://doi.org/10.1016/j.apm.2015.02.012

  5. Fonseca HM, Orlande HRB, Fudym O, Sepúlveda F (2014) A statistical inversion approach for local thermal diffusivity and heat flux simultaneous estimation. Quant Infrared Thermogr J. https://doi.org/10.1080/17686733.2014.947860

  6. Tomanek LB, Stutts DS (2022) Thermal conductivity estimation via a multi-point harmonic one-dimensional convection model. Int J Heat Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122467

  7. Mishra K, Garnier B, Le Corre S, Boyard N (2020) Accurate measurement of the longitudinal thermal conductivity and volumetric heat capacity of single carbon fibers with the 3ω method. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08568-z

  8. Longo GA (2008) A Steady-State Apparatus to Measure the Thermal Conductivity of Solids. Int J Thermophys. https://doi.org/10.1007/s10765-008-0389-x

  9. Reddy KS, Jayachandran S (2017) Investigations on design and construction of a square guarded hot plate (SGHP) apparatus for thermal conductivity measurement of insulation materials. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2017.06.001

  10. Jannot Y, Meulemans J, Schick V, Capp M, Bargain I (2020) A Comparative Fluxmetric (CFM) Method for Apparent Thermal Conductivity Measurement of Insulating Materials at High Temperature. Int J Thermophys. https://doi.org/10.1007/s10765-020-02676-x

  11. Yang I, Kim D, Lee S (2018) Construction and preliminary testing of a guarded hot plate apparatus for thermal conductivity measurements at high temperatures. Int J Heat Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.072

  12. Kerschbaumer RC, Stieger S, Gschwandl M, Hutterer T, Fasching M, Lechner B, Meinhart L, Hildenbrandt J, Schrittesser B, Fuchs PF, Berger GR, Friesenbichler W (2019) Comparison of steady-state and transient thermal conductivity testing methods using different industrial rubber compounds. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.106121

  13. Filla BJ (1997) A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics. Rev Sci Instrum. https://doi.org/10.1063/1.1148202

  14. Stacey C, Simpkin AJ, Jarrett RN (2016) Techniques for Reducing Thermal Contact Resistance in Steady-State Thermal Conductivity Measurements on Polymer Composites. Int J Thermophys. https://doi.org/10.1007/s10765-016-2119-0

  15. Lamrani M, Laaroussi N, Khabbazi A, Khalfaoui M, Garoum M, Feiz A (2017) Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2017.09.006

  16. Yao K, Liu Y, Zhou Y, Wang X, Wang Q, Ma Y, Yao C (2020) Influence of Thermal Contact Resistance on Thermal Conductivity Measurement with a High-Temperature Guarded Hot Plate Apparatus. Int J Thermophys. https://doi.org/10.1007/s10765-019-2595-0

  17. JCGM 101 (2008) Evaluation of Measurement Data—Supplement 1 to the guide to the expression of uncertainty in measurement—propagation of distributions using a Monte Carlo Method, 1st edn. Joint Committee for Guides in Metrology, BIPM, Paris

    Google Scholar 

  18. Ferreira-Oliveira JR, De Lucena LRR, Dos Reis RPB, De Araújo CJ, Bezerra-Filho CR, Arencibia RV (2020) Uncertainty Quantification Through use of the Monte Carlo Method in a One-Dimensional Heat Conduction Experiment. Int J Thermophys. https://doi.org/10.1007/s10765-020-02724-6

  19. JCGM 100 (1995) Evaluation of measurement data—guide to the expression of uncertainty in measurement (GUM), GUM 1995 with minor corrections, p 2008

  20. Ferreira-Oliveira JR, De Lucena LRR, Dos Reis RPB, De Araújo CJ, Bezerra-Filho CR (2021) Thermal diffusivity measurement of stainless-steel alloys through use of the Angstrom’s method. Exp Heat Transfer. https://doi.org/10.1080/08916152.2021.1887407

  21. Wang C, Qiu Z, Yang Y (2016) Uncertainty propagation of heat conduction problem with multiple random inputs. Int J Heat Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.094

  22. Leal JES, Da Silva JA, Arencibia RV (2020) Contributions to the adaptive Monte Carlo method. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02548-3

  23. Ferreira-Oliveira JR, da Silva PCS, de Lucena LRR, dos Reis RPB, de Araújo CJ, Bezerra-Filho CR (2021) Thermal Diffusivity Measurement of a NiTi Shape Memory Alloy Using a Periodic Temperature Field. Int J Thermophys. https://doi.org/10.1007/s10765-021-02900-2

  24. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci. https://doi.org/10.1016/0894-1777(88)90043-X

  25. Hedayati-Dezfooli M, Leong WH (2020) A design of experimental apparatus for studying coupled heat and moisture transfer in soils at high-temperature conditions. Exp Heat Transfer. https://doi.org/10.1080/08916152.2019.1600618

  26. MatWeb (2021) Overview of materials for Nylon 66, Unreinforced. MatWeb Material Property Data. http://www.matweb.com/search/datasheet_print.aspx?matguid=a2e79a3451984d58a8a442c37a226107. Accessed 17 June 2021

  27. dos Santos WN (2015) Modified split column technique for the experimental determination of thermal conductivity of polymers. Polym Test. https://doi.org/10.1016/j.polymertesting.2014.10.009

  28. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2016.03.001

  29. Guimarães G, Philippi PC, Thery P (1995) Use of parameters estimation method in the frequency domain for the simultaneous estimation of thermal diffusivity and conductivity. Rev Sci Instrum. https://doi.org/10.1063/1.1145592

  30. Lima e Silva SMM, Duarte MAV, Guimarães G (1998) A correlation function for thermal properties estimation applied to a large thickness sample with a single surface sensor. Rev Sci Instrum. https://doi.org/10.1063/1.1149094

  31. Borges VL, Lima e Silva SMM, Guimarães G (2006) A dynamic thermal identification method applied to conductor and nonconductor materials. Inverse Probl Sci Eng. https://doi.org/10.1080/17415970600573700

  32. Sousa PFB, Carvalho SR, Guimarães G (2008) Dynamic observers based on Green's functions applied to 3D inverse thermal models. Inverse Probl Sci Eng. https://doi.org/10.1080/17415970802082765

  33. Borges VL, Sousa PFB, Guimarães G (2008) Experimental determination of thermal conductivity and diffusivity using a partially heated surface method without heat flux transducer. Inverse Probl Sci Eng. https://doi.org/10.1080/17415970802166659

  34. Carollo LFS, Lima e Silva ALF, Lima e Silva SMM (2012) Applying different heat flux intensities to simultaneously estimate the thermal properties of metallic materials. Meas Sci Technol. https://doi.org/10.1088/0957-0233/23/6/065601

  35. Malheiros FC, Nascimento JG, Fernandes AP, Guimarães G (2020) Simultaneously estimating the thermal conductivity and thermal diffusivity of a poorly conducting solid material using single surface measurements. Rev Sci Instrum. https://doi.org/10.1063/1.5122756

  36. Ramos NP, Carollo LFS, Lima e Silva SMM (2020) Contact resistance analysis applied to simultaneous estimation of thermal properties of metals. Meas Sci Technol. https://doi.org/10.1088/1361-6501/ab8e6a

  37. Santos-Junior JA, Ferreira-Oliveira JR, do Nascimento JG, Fernandes AP, Guimarães G (2022) Simultaneous estimation of thermal properties via measurements using one active heating surface and Bayesian inference. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2021.107304

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq), the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES), and the Research Support Foundation of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

José Ricardo Ferreira Oliveira: Conceptualization, Methodology, Validation, Investigation, Writing – original draft, review & editing.

José Aguiar dos Santos Júnior: Methodology, Validation, Investigation, Writing – original draft.

Vinícius Soares Medeiros: Methodology, Investigation, Writing – review & editing.

Gilmar Guimarães: Conceptualization, Resources, Supervision.

Corresponding author

Correspondence to J. R. Ferreira-Oliveira.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Oliveira, J.R., dos Santos-Junior, J.A., Medeiros, V.S. et al. Thermal Conductivity Measurement of a Polymer Material Using a Steady-State Temperature Field. Exp Tech 47, 483–491 (2023). https://doi.org/10.1007/s40799-022-00566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-022-00566-5

Keywords

Navigation