Skip to main content
Log in

Hydrothermal Performance Augmentation of a Rectangular Channel Via Novel Designs of Transverse Turbulators: An Insight into Performance Improvement of Solar Air Heaters

  • Applications paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

The current experimental study focuses on designing novel shapes of transverse turbulators to improve the performance of solar air heaters. Fourteen designs are derived from the original case having length × width × thickness of 30 mm × 15 mm × 0.8 mm. These turbulators are tested in a rectangular channel, and the thermal and hydraulic transport performances of the fitted channel are compared with those obtained for the vacant channel. Although the novel geometries may provide a weaker thermal characteristic through the channel, the penalty in the hydraulic characteristic is decreased significantly compared to the original shape, leading to better overall hydrothermal performances. It is found that the novel designs of transverse turbulators own lower values of heat transfer coefficient, that is ranging from 12.1% to 45.2%, whereas the pressure drop decreases within the range of 48%–91% at the studied Reynolds numbers (Re = 1643, 3286, and 4929). The results show that the Nusselt number ratio (Nufitted/Nuclear) gets reducing trend with increasing Re, while the friction factor ratio (ffitted/fclear) gets increasing trend. An appropriate tradeoff between thermal and hydraulic characteristics is established by using a specific design which presents minimum values of pressure drop and maximum values of the performance index. The highest index of 1.69 is recorded for this turbulator design at Re = 1643.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A c :

frontal flow area (m2)

A t :

total heat transfer area (m2)

c p :

specific heat (J kg−1 K−1)

D h :

hydraulic diameter (m)

H :

height of channel (m)

h :

heat transfer coefficient (W m−2 K−1)

k :

thermal conductivity (W m−1 K−1)

L :

length of channel (m)

l :

length of turbulators (m)

m :

mass flow rate (kg s−1)

Q :

heat transfer rate (W)

P :

perimeter (m)

∆p :

pressure drop (Pa)

T :

temperature (K)

t :

thickness of turbulators (m)

u :

velocity (m s−1)

W :

width of channel (m)

w :

width of turbulators (m)

ρ :

density (kg m−3)

μ :

dynamic viscosity (Pa s)

conv :

convection

in :

inlet

m :

mean

out :

outlet

w :

wall

f :

Friction factor

Nu :

Nusselt number.

Pr :

Prandtl number

Re :

Reynolds number

OPI:

overall performance index

References

  1. Awais M, Bhuiyan AA (2018) Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities. Thermal Sci Eng Progress 5:524–545

    Article  Google Scholar 

  2. Schubauer GB, Spangenberg WG (1960) Forced mixing in boundary layers. J Fluid Mech 8(1):10–32

    Article  Google Scholar 

  3. Valencia A (1998) Numerical study of self-sustained oscillatory flows and heat transfer in channels with a tandem of transverse vortex generators. Heat Mass Transf 33:465–470

    Article  CAS  Google Scholar 

  4. Nanan K, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S (2017) Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators. Appl Thermal Eng 114:130–147

    Article  CAS  Google Scholar 

  5. Sun Z, Zhang K, Li W, Chen Q, Zheng N (2020) Investigations of the turbulent thermal-hydraulic performance in circular heat exchanger tubes with multiple rectangular winglet vortex generators. Appl Thermal Eng 168:114838

    Article  Google Scholar 

  6. Promvonge P, Skullong S (2020) Thermo-hydraulic performance in heat exchanger tube with V-shaped winglet vortex generator. Appl Thermal Eng 164:114424

    Article  Google Scholar 

  7. Zheng N, Liu P, Shan F, Liu Z, Liu W (2017) Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators. Appl Thermal Eng 122:642–652

    Article  Google Scholar 

  8. Khoshvaght-Aliabadi M, Akbari MH, Hormozi F (2016) An empirical study on vortex-generator insert fitted in tubular heat exchangers with dilute cu–water nanofluid flow. Chinese J Chem Eng 24(6):728–736

    Article  CAS  Google Scholar 

  9. Khoshvaght-Aliabadi M, Rahnama P, Zanganeh A, Akbari MH (2016) Experimental study on metallic water nanofluids flow inside rectangular duct equipped with circular pins (pin channel). Exp Thermal Fluid Sci 72:18–30

    Article  CAS  Google Scholar 

  10. Lu G, Zhai X (2019) Effects of curved vortex generators on the air-side performance of fin-and-tube heat exchangers. Int J Thermal Sci 136:509–518

    Article  Google Scholar 

  11. Han H, Wang S, Li S, Li Y, Wang S (2019) Numerical study of thermal and flow characteristics for a fin-and-tube heat exchanger with arc winglet type vortex generators. Int J Refrigeration 98:61–69

    Article  Google Scholar 

  12. Modi AJ, Rathod MK (2019) Comparative study of heat transfer enhancement and pressure drop for fin-and-circular tube compact heat exchangers with sinusoidal wavy and elliptical curved rectangular winglet vortex generator. Int J Heat Mass Transf 141:310–326

    Article  Google Scholar 

  13. Lu G, Zhai X (2018) Analysis on heat transfer and pressure drop of fin-and-oval-tube heat exchangers with tear-drop delta vortex generators. Int J Heat Mass Transf 127:1054–1063

    Article  Google Scholar 

  14. Zeeshan M, Nath S, Bhanja D, Das A (2018) Numerical investigation for the optimal placements of rectangular vortex generators for improved thermal performance of fin-and-tube heat exchangers. Appl Thermal Eng 136:589–601

    Article  Google Scholar 

  15. Awais M, Bhuiyan AA (2019) Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): a parametric study. Int J Thermal Sci 140:154–166

    Article  Google Scholar 

  16. Dang W, Nugud J, Lin Z-M, Zhang Y-H, Liu S, Wang L-B (2018) The performances of circular tube bank fin heat exchangers with fins punched with quadrilateral vortex generators and flow re-distributors. Appl Thermal Eng 134:437–449

    Article  Google Scholar 

  17. N. Chimres, C-C. Wang, S. Wongwises, Optimal design of the semi-dimple vortex generator in the fin and tube heat exchanger, Int J Heat Mass Transf 120 (2018) 1173–1186

  18. Samadifar M, Toghraie D (2018) Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl Thermal Eng 133:671–681

    Article  Google Scholar 

  19. Song KW, Tagawa T, Chen ZH, Zhang Q (2019) Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. Int J Thermal Sci 137:215–228

    Article  Google Scholar 

  20. T. Ma, X. Lu, J. Pandit, S.V. Ekkad, S.T. Huxtable, S. Deshpande, Q-W. Wang, Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators, Appl Energy 185 (2017) 1343–1354

  21. Khoshvaght-Aliabadi M, Jafari A, Sartipzadeh O, Salami M (2016) Thermal–hydraulic performance of wavy plate-fin heat exchanger using passive techniques: perforations, winglets, and nanofluids. Int Commun Heat Mass Transfer 78:231–240

    Article  CAS  Google Scholar 

  22. Abdullah AS, Abou Al-sood MM, Omara ZM, Bek MA, Kabeel AE (2018) Performance evaluation of a new counter flow double pass solar air heater with turbulators. Sol Energy 173:398–406

    Article  Google Scholar 

  23. Rajaseenivasan T, Srinivasan S, Srithar K (2015) Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate. Energy 88:863–873

    Article  Google Scholar 

  24. Acır A, Ata İ (2016) A study of heat transfer enhancement in a new solar air heater having circular type turbulators. J Energy Institute 89(4):606–616

    Article  CAS  Google Scholar 

  25. Skullong S, Promthaisong P, Promvonge P, Thianpong C, Pimsarn M (2018) Thermal performance in solar air heater with perforated-winglet-type vortex generator. Sol Energy 170:1101–1117

    Article  Google Scholar 

  26. Skullong S, Promvonge P, Thianpong C, Pimsarn M (2016) Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators. Appl Thermal Eng 100:611–620

    Article  Google Scholar 

  27. Bezbaruah PJ, Das RS, Sarkar BK (2020) Overall performance analysis and GRA optimization of solar air heater with truncated half conical vortex generators. Sol Energy 196:637–652

    Article  Google Scholar 

  28. Baissi MT, Brima A, Aoues K, Khanniche R, Moummi N (2020) Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators. Appl Thermal Eng 165:113563

    Article  Google Scholar 

  29. Lu G, Zhai X (2019) Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators. Int J Thermal Sci 145:105986

    Article  Google Scholar 

  30. Al-Asadi MT, Al-damook A, Wilson MCT (2018) Assessment of vortex generator shapes and pin fin perforations for enhancing water-based heat sink performance. Int Commun Heat Mass Transfer 91:1–10

    Article  Google Scholar 

  31. Khoshvaght-Aliabadi M, Deldar S, Hassani SM (2018) Effects of pin-fins geometry and nanofluid on the performance of a pin-fin miniature heat sink (PFMHS). Int J Mech Sci 148:442–458

    Article  Google Scholar 

  32. Rashidi MM, Sadri M, Sheremet MA (2021) Numerical simulation of hybrid Nanofluid mixed convection in a lid-Driven Square cavity with magnetic field using high-order compact scheme. Nanomaterials 11(9):2250

    Article  CAS  Google Scholar 

  33. Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM (2017) Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with cu–water nanofluid. Int J Heat Mass Transf 104:878–889

    Article  CAS  Google Scholar 

  34. Lakzian E, Masoudifar A, Saghi H (2017) A novel explicit equation for the friction factor prediction in the annular flow with drag-reducing polymer. European Phys J Plus 132:125

    Article  Google Scholar 

  35. Mirzaie M, Lakzian E (2016) Natural convection of cu–water nanofluid near water density inversion in horizontal annulus with different arrangements of discrete heat source – sink pair. Advanced Powder Technol 27(4):1337–1346

    Article  CAS  Google Scholar 

  36. ASHRAE (1977) Standard 93–77, Method of testing to determine the thermal performance of solar air heater, New York 1–34

  37. Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, sixth edn. John Wiley & Sons, New York

    Google Scholar 

  38. Kays WM, London AL (1984) Compact heat exchangers, 3rd edn. Kreiger Publishing, Melbourne

    Google Scholar 

  39. Webb RL, Kim NH (1994) Principle of enhanced heat transfer. Taylor Francis, New York

    Google Scholar 

  40. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8

    Google Scholar 

  41. Holman JP (2002) Heat transfer, ninth edn. McGraw-Hill, New York

    Google Scholar 

  42. Kakac S, Shah RK, Bergles AE (eds) (1983) Low Reynolds number flow heat exchanger. Hemisphere, New York, pp 75–108

    Google Scholar 

  43. Khoshvaght-Aliabadi M, Shabanpour H, Alizadeh A, Sartipzadeh O (2015) Experimental assessment of different inserts inside straight tubes: Nanofluid as working media. Chem Eng Process: Process Intensific 97:1–11

    Article  CAS  Google Scholar 

  44. Khoshvaght-Aliabadi M, Zangouei S, Hormozi F (2015) Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation. Int J Thermal Sci 88:180–192

    Article  CAS  Google Scholar 

  45. Eiamsa-ard S, Somkleang P, Nuntadusit C, Thianpong C (2013) Heat transfer enhancement in tube by inserting uniform/non-uniform twisted-tapes with alternate axes: effect of rotated-axis length. Appl Thermal Eng 54(1):289–309

    Article  Google Scholar 

  46. Rahimi M, Shabanian SR, Alsairafi AA (2009) Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process: Process Intensific 48(3):762–770

    Article  CAS  Google Scholar 

  47. Khoshvaght-Aliabadi M, Tatari M, Salami M (2018) Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers. Renew Energy 115:1099–1108

    Article  CAS  Google Scholar 

  48. Chang SW, Yang TL, Liou JS (2007) Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Thermal Fluid Sci 32(2):489–501

    Article  CAS  Google Scholar 

  49. Eiamsa-ard S, Seemawute P, Wongcharee K (2010) Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows. Exp Thermal Fluid Sci 34(6):711–719

    Article  Google Scholar 

  50. Skullong S, Kwankaomeng S, Thianpong C, Promvonge P (2014) Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators. Int Commun Heat Mass Transfer 50:34–43

    Article  Google Scholar 

  51. Chokphoemphun S, Pimsarn M, Thianpong C, Promvonge P (2015) Heat transfer augmentation in a circular tube with winglet vortex generators. Chinese J Chem Eng 23(4):605–614

    Article  CAS  Google Scholar 

  52. Acır A, Ata İ, Canlı ME (2016) Investigation of effect of the circular ring turbulators on heat transfer augmentation and fluid flow characteristic of solar air heater. Ex Thermal Fluid Sci 77:45–54

    Article  Google Scholar 

  53. Pourramezan M, Ajam H (2016) Modeling for thermal augmentation of turbulent flow in a circular tube fitted with twisted conical strip inserts. Appl Thermal Eng 105:509–518

    Article  Google Scholar 

  54. Khoshvaght-Aliabadi M, Baneshi Z, Khaligh SF (2017) Analysis on performance of nanofluid-cooled vortex-generator channels with variable longitudinal spacing among delta-winglets. Appl Thermal Eng 122:1–10

    Article  CAS  Google Scholar 

  55. Lei Y, Zheng F, Song C, Lyu Y (2017) Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators. Int J Heat Mass Transf 111:299–311

    Article  Google Scholar 

  56. Chamoli S, Lu R, Yu P (2017) Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts. Appl Thermal Eng 121:1117–1134

    Article  Google Scholar 

  57. Liu H-L, Li H, He Y-L, Che Z-T (2018) Heat transfer and flow characteristics in a circular tube fitted with rectangular winglet vortex generators. Int J Heat Mass Transf 126:989–1006

    Article  CAS  Google Scholar 

  58. Xu Y, Islam MD, Kharoua N (2018) Experimental study of thermal performance and flow behaviour with winglet vortex generators in a circular tube. Appl Thermal Eng 135:257–268

    Article  Google Scholar 

  59. Ibrahim MM, Essa MA, Mostafa NH (2019) A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int J Thermal Sci 137:138–160

    Article  Google Scholar 

  60. Nakhchi ME, Esfahani JA (2019) Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers. Appl Thermal Eng 156:494–505

    Article  Google Scholar 

  61. Zhai C, Islam MD, Simmons R, Barsoum I (2019) Heat transfer augmentation in a circular tube with delta winglet vortex generator pairs. Int J Thermal Sci 140:480–490

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S.M. Hassani for his assistance with the experiments, and Miss A. Salimi in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khoshvaght-Aliabadi.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M., Khoshvaght-Aliabadi, M. & Mortazavi, S. Hydrothermal Performance Augmentation of a Rectangular Channel Via Novel Designs of Transverse Turbulators: An Insight into Performance Improvement of Solar Air Heaters. Exp Tech 46, 889–903 (2022). https://doi.org/10.1007/s40799-021-00523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-021-00523-8

Keywords

Navigation