Effect of Fiber Orientation on Nonlinear Damping and Internal Microdeformation in Short-Fiber-Reinforced Natural Rubber


Nonlinear damping with respect to vibration amplitude is particularly important in mechanical dynamics. The addition of short fibers to damping materials is considered to result in strong nonlinear damping due to interfacial peeling at the edges of the fibers. However, little has been reported on the occurrence of nonlinear damping in short-fiber reinforced rubber due to compounding difficulties. In this study, we investigated the relationship between the damping characteristics and deformation behavior of microdeformed short-fiber reinforced rubber by X-ray computed tomography (CT). We prepared a damping material with a natural rubber (NR) matrix and micrometer-sized polyethylene terephthalate (PET) fiber filler. The loss factor was identified by dynamic mechanical analysis, and three-dimensional strain maps were obtained using marker tracking in the CT data. The addition of 5 wt% PET fibers to NR resulted in an increase in the loss factor. Experimentally, we found that the nonlinear damping of the composite rubber is affected by the peeling of the filler/matrix interface and the strain inside the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Chung DDL (2001) Review: materials for vibration damping. J Mater Sci 36(24):5733–5737. https://doi.org/10.1023/A:1012999616049

    CAS  Article  Google Scholar 

  2. 2.

    Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials. Arch Appl Mech 71(2–3):89–109. https://doi.org/10.1007/s004190000102

    Article  Google Scholar 

  3. 3.

    Alvelid M, Enelund M (2007) Modelling of constrained thin rubber layer with emphasis on damping. J Sound Vib 300(3–5):662–675. https://doi.org/10.1016/j.jsv.2006.08.031

    Article  Google Scholar 

  4. 4.

    Elliott SJ, Tehrani MG, Langley RS (2015) nonlinear damping and quasi-linear modelling. Philos Trans Royal Soc A 373:20140402. https://doi.org/10.1098/rsta.2014.0402

  5. 5.

    Zoghaib L, Mattei P-O (2014) Modeling and optimization of local constraint elastomer treatments for vibration and noise reduction. J Sound Vib 333(26):7109–7124. https://doi.org/10.1016/j.jsv.2014.08.018

    Article  Google Scholar 

  6. 6.

    Ribeiro EA, de Oliveira Lopes EM, Bavastri CA (2017) A numerical and experimental study on optimal design of multi-DOF viscoelastic supports for passive vibration control in rotating machinery. J Sound Vib 411(22):346–361. https://doi.org/10.1016/j.jsv.2017.09.008

    Article  Google Scholar 

  7. 7.

    Amabili M (2018) Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn 93(1):5–18. https://doi.org/10.1007/s11071-017-3889-z

    Article  Google Scholar 

  8. 8.

    Gong D, Duan Y, Wang K, Zhou J (2019) Modelling rubber dynamic stiffness for numerical predictions of the effects of temperature and speed on the vibration of a railway vehicle car body. J Sound Vib 449(9):121–139. https://doi.org/10.1016/j.jsv.2019.02.037

    Article  Google Scholar 

  9. 9.

    Qin R, Huang R, Lu X (2018) Use of gradient laminating to prepare NR/ENR composites with excellent damping performance. Mater Des 149(5):43–50. https://doi.org/10.1016/j.matdes.2018.03.063

    CAS  Article  Google Scholar 

  10. 10.

    Zang L, Chen D, Cai Z, Peng J, Zhu M (2018) Preparation and damping properties of an organic–inorganic hybrid material based on nitrile rubber. Compos Part B: Eng 137(15):217–224. https://doi.org/10.1016/j.compositesb.2016.11.038

    CAS  Article  Google Scholar 

  11. 11.

    Geethamma VG, Kalaprasad G, Groeninckx G, Thomas D (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A: Appl Sci Manuf 36(11):1499–1506. https://doi.org/10.1016/j.compositesa.2005.03.004

    CAS  Article  Google Scholar 

  12. 12.

    Araki K, Kaneko S, Matsumoto K, Nagatani A, Tanaka T, Arao T (2014) Comparison of cellulose, talc, and mica as filler in natural rubber composites on vibration-damping and gas barrier properties. Adv Mater Res 844:318–321. https://doi.org/10.4028/www.scientific.net/AMR.844.318

    CAS  Article  Google Scholar 

  13. 13.

    Trevio A, Genechten BV, Mundo D, Tournour M (2015) Damping in composite materials: properties and models. Compos Part B: Eng 78:144–152. https://doi.org/10.1016/j.compositesb.2015.03.081

    CAS  Article  Google Scholar 

  14. 14.

    Maslowski M, Miedzianowska J, Strzelec K (2017) Natural rubber biocomposites containing corn, barley and wheat straw. Polym Test 63:84–91. https://doi.org/10.1016/j.polymertesting.2017.08.003

    CAS  Article  Google Scholar 

  15. 15.

    Nopparut A, Amornsakchai T (2016) Influence of pineapple leaf fiber and its surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composite. Polym Test 52:141–149. https://doi.org/10.1016/j.polymertesting.2016.04.012

    CAS  Article  Google Scholar 

  16. 16.

    Roy K, Debnath SC, Das A, Geinrich G, Potiyaraj P (2018) Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym Test 67:487–493. https://doi.org/10.1016/j.polymertesting.2018.03.032

    CAS  Article  Google Scholar 

  17. 17.

    Stelescu MD, Comeaga D, Sonmez M, Gurau D (2018) The mechanical properties of some polymer composites based on natural rubber. Mater Plast 55(1):115–120

    Article  Google Scholar 

  18. 18.

    Rahman MZ, Jayaraman K, Mace BR (2018) Influence of damping on the bending and twisting modes of flax fibre-reinforced polypropylene composite. Fibers Polym 19:375. https://doi.org/10.1007/s12221-018-7588-7

    CAS  Article  Google Scholar 

  19. 19.

    Merckel Y, Diani J, Brieu M, Caillard J (2013) Effects of the amount of fillers and of the crosslink density on the mechanical behavior of carbon-black filled styrene butadiene rubber. J Appl Polym Sci 129(4):2086–2091. https://doi.org/10.1002/app.38925

    CAS  Article  Google Scholar 

  20. 20.

    Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer−filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41(7):2727–2731. https://doi.org/10.1021/ma7022364

    CAS  Article  Google Scholar 

  21. 21.

    Kawahara S, Yamamoto Y, Isono Y (2014) Controlling the performance of filled rubber. J Soc Rheol 42(2):79–88. https://doi.org/10.1678/rheology.42.79

    CAS  Article  Google Scholar 

  22. 22.

    Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27(3):340–345. https://doi.org/10.1016/j.polymertesting.2007.12.003

    CAS  Article  Google Scholar 

  23. 23.

    Adachi T, Yamada Y, Ishii Y (2017) Interphase-layer effect on deformation of silicone rubber filled with nanosilica particles. J Appl Polym Sci 135(8):45880. https://doi.org/10.1002/app.45880

    CAS  Article  Google Scholar 

  24. 24.

    Amari T, Uesugi K, Suzuki H (1997) Viscoelastic properties of carbon black suspension as a flocculated percolation system. Prog Org Coat 31(1–2):171–178. https://doi.org/10.1016/S0300-9440(97)00033-7

    CAS  Article  Google Scholar 

  25. 25.

    Jowkarderis L, van de Ven GM (2015) Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Carbohydr Polym 123:416–423. https://doi.org/10.1016/j.carbpol.2015.01.067

    CAS  Article  Google Scholar 

  26. 26.

    Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352. https://doi.org/10.1002/pen.760160512

    CAS  Article  Google Scholar 

  27. 27.

    Finegan IC, Tibbetts GG, Gibson RF (2003) Modeling and characterization of damping in carbon nanofiber/polypropylene composites. Compos Sci Technol 63(11):1629–1635. https://doi.org/10.1016/S0266-3538(03)00054-X

    CAS  Article  Google Scholar 

  28. 28.

    Zhang B, Yu X, Gu B (2017) An improved shear lag model for predicting stress distribution in hybrid fiber reinforced rubber composites. Fib Polym 18(2):349–356. https://doi.org/10.1007/s12221-017-6522-3

    Article  Google Scholar 

  29. 29.

    Matous K, Geubell PH (2006) Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations. Int J Numer Meth Eng 65(2):190–223. https://doi.org/10.1002/nme.1446

    Article  Google Scholar 

  30. 30.

    Nishikawa M, Okabe T, Takeda N (2009) Effect of the microstructure on the fracture mode of short-fiber reinforced plastic composites. Trans Jpn Soc Mech Eng A 75(751):287–295. https://doi.org/10.1299/kikaia.75.287

    CAS  Article  Google Scholar 

  31. 31.

    Nelson DJ, Hancock JW (1978) Interfacial slip and damping in fibre reinforced composites. J Mater Sci 13(11):2429–2440. https://doi.org/10.1007/BF00808058

    CAS  Article  Google Scholar 

  32. 32.

    Chandra R, Singh SP, Gupta K (1999) Damping studies in fiber-reinforced composites—a review. Compos Struct 46(1):41–51. https://doi.org/10.1016/S0263-8223(99)00041-0

    Article  Google Scholar 

  33. 33.

    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226. https://doi.org/10.1007/BF02323555

    Article  Google Scholar 

  34. 34.

    Limodin N, Rѐthorѐ J, Adrien J, Buffiѐre JY, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959–970. https://doi.org/10.1007/s11340-010-9397-4

    Article  Google Scholar 

  35. 35.

    Grosbras PL, Rѐthorѐ J, Limodin N, Witz JF, Brieu M (2015) Three-dimensional investigation of free-edge effects in laminate composites using X-ray tomography and digital volume correlation. Exp Mech 55(1):301–311. https://doi.org/10.1007/s11340-014-9891-1

    Article  Google Scholar 

  36. 36.

    Penumadu D, Kim F, Bunn J (2016) Damage of composite materials subjected to projectile penetration using high resolution X-ray micro computed tomography. Exp Mech 56(4):607–616. https://doi.org/10.1007/s11340-015-0085-2

    CAS  Article  Google Scholar 

  37. 37.

    Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51(8):2407–2415. https://doi.org/10.1016/S1359-6454(03)00053-3

    CAS  Article  Google Scholar 

  38. 38.

    Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  39. 39.

    Nielsen SF, Beckmann F, Poulsen HF, Wert JA (2004) Measurement of the components of plastic displacement gradients in three dimensions. Mater Scien Eng: A 387-389:336–338. https://doi.org/10.1016/j.msea.2004.01.090

    CAS  Article  Google Scholar 

  40. 40.

    Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson DS et al (2008) High-density 3-D mapping of internal strain by tracking microstructural features. Acta Mater 56(10):2167–2181. https://doi.org/10.1016/j.actamat.2007.12.058

    CAS  Article  Google Scholar 

  41. 41.

    Toda H, Maire E, Aoki Y, Kobayashi M (2011) Three-dimensional strain mapping using in situ X-ray synchrotron microtomography. J Strain Anal Eng Des 46(7):549–561. https://doi.org/10.1177/0309324711408975

    Article  Google Scholar 

  42. 42.

    Kobayashi M, Toda H, Takeuchi A, Uesugi K, Suzuki Y (2012) Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Mater Charact 69:52–62. https://doi.org/10.1016/j.matchar.2012.04.008

    CAS  Article  Google Scholar 

  43. 43.

    Barber CB, Dobkin DP, Huhdanpaa HT (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

    Article  Google Scholar 

Download references


This work was supported by JSPS KAKENHI (grant numbers 16 K18041 and 18 K13715) and an advanced technological research project conducted by the Research and Development Center for Advanced Composite Materials of Doshisha University and a MEXT (the Ministry of Education, Culture, Sports, Science and Technology, Japan)-supported Program for the Strategic Research Foundation at Private Universities (2013-2017, the project S1311036).

Author information



Corresponding author

Correspondence to M. Matsubara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsubara, M., Teramoto, S., Nagatani, A. et al. Effect of Fiber Orientation on Nonlinear Damping and Internal Microdeformation in Short-Fiber-Reinforced Natural Rubber. Exp Tech 45, 37–47 (2021). https://doi.org/10.1007/s40799-020-00404-6

Download citation


  • Damping material
  • Loss factor
  • Fiber orientation
  • X-ray tomography
  • Marker tracking