Skip to main content

Novel Cyclic Fatigue Testing Machine for Endodontic Files

Abstract

The characteristics of superelasticity and shape-memory of the NiTi make endodontic rotary files suitably flexible and resistant while operating within curved canals. However, continuous rotation within accentuated curvatures causes stresses that can lead to intraoperative fracture by torsional shear or flexural cyclic fatigue. The aim of this paper is to design and build a rotary bending testing machine able to estimate reproducibly the fatigue life of endodontic instruments. The main innovation of this apparatus consists in ensuring that the file rotates freely, not being forced within a suitable shaped housing, and this provides both advantages of reducing the influence of the friction phenomena and maintaining unchanged geometric parameters. A further element of novelty is the real-time measurement of the bending force during the test up to the failure. Moreover, such a machine makes it possible to perform predictive thermographic tests of the file fatigue life and to monitor the energetic trend of the static and rotary bending while testing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Jia Y, Yong G (2012) Metallurgical characterization of M-wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 38:105–107. https://doi.org/10.1016/j.joen.2011.09.028

    Article  Google Scholar 

  2. 2.

    Bechle NJ, Kyriakides S (2016) Evolution of phase transformation fronts and associated thermal effects in a NiTi tube under a biaxial stress state. Extreme Mech Lett 8:55–63. https://doi.org/10.1016/j.eml.2016.02.018

    Article  Google Scholar 

  3. 3.

    Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys. Springer, Boston, pp 1–51. https://doi.org/10.1007/978-0-387-47685-8

    Chapter  Google Scholar 

  4. 4.

    Maletta C, Falvo A, Furgiuele F, Reddy JN (2009) A phenomenological model for superelasticity in NiTi alloys. Smart Mater Struct 18:1–9. https://doi.org/10.1088/0964-1726/18/2/025005

    CAS  Article  Google Scholar 

  5. 5.

    Thompson SA (2000) An overview of nickel-titanium alloys used in dentistry. Int Endod J 33:297–310. https://doi.org/10.1046/j.1365-2591.2000.00339.x

    CAS  Article  Google Scholar 

  6. 6.

    Zhou H, Peng B, Zheng YF (2013) An overview of the mechanical properties of nickel-titanium endodontic instruments. Endod Topics 29:42–54. https://doi.org/10.1111/etp.12045

    Article  Google Scholar 

  7. 7.

    Braz Fernandes FM, Alves AR, Machado A, Oliveira JP (2017) Effect of heat treatments on Ni-Ti endodontic files. C Tecn Mat 29:e15–e18. https://doi.org/10.1016/j.ctmat.2016.07.012

    Article  Google Scholar 

  8. 8.

    Kramkowski TR, Bahcall J (2009) An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT series X rotary nickel-titanium files. J Endod 35:404–407. https://doi.org/10.1016/j.joen.2008.12.003

    Article  Google Scholar 

  9. 9.

    Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E (2016) Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod 42:156–159. https://doi.org/10.1016/j.joen.2015.10.004

    Article  Google Scholar 

  10. 10.

    Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, Rapisarda E, La Rosa G (2015) Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel–titanium instruments. Int Endod J 48:1043–1050. https://doi.org/10.1111/iej.12400

    Article  Google Scholar 

  11. 11.

    Li UM, Lee BS, Shih CT, Lan WH, Lin CP (2002) Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod 28:448–451. https://doi.org/10.1097/00004770-200206000-00007

    Article  Google Scholar 

  12. 12.

    Elnaghy AM, Elsaka SE (2015) Torsion and bending properties of OneShape and WaveOne instruments. J Endodontics 41:544–547. https://doi.org/10.1016/j.joen.2014.11.010

    Article  Google Scholar 

  13. 13.

    La Rosa G, Lo Savio F, Pedullà E, Rapisarda E (2017) A new torquemeter to measure the influence of heat-treatment on torsional resistance of NiTi endodontic instruments. Eng Fail Anal 82:446–457. https://doi.org/10.1016/j.engfailanal.2017.08.005

    CAS  Article  Google Scholar 

  14. 14.

    Wycoff RC, Berzins DW (2012) An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design. J Endod 38:1118–1120. https://doi.org/10.1016/j.joen.2012.04.022

    Article  Google Scholar 

  15. 15.

    Lo Savio F, Pedullà E, Rapisarda E, La Rosa G (2016) Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments. Procedia Struct Integ 2:1311–1318. https://doi.org/10.1016/j.prostr.2016.06.167

    Article  Google Scholar 

  16. 16.

    Peters OA, Barbakow F (2002) Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int Endod J 35:379–389. https://doi.org/10.1046/j.0143-2885.2001.00494.x

    CAS  Article  Google Scholar 

  17. 17.

    Pruett P, Clement DJ, Carnes DL Jr (1997) Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 23:77–85. https://doi.org/10.1016/S0099-2399(97)80250-6

    CAS  Article  Google Scholar 

  18. 18.

    Zhuyu W, Wen Z, Xiaolei Z (2016) Cyclic fatigue resistance and force generated by OneShape instruments during curved canal preparation. PLoS One 11:1–11. https://doi.org/10.1371/journal.pone.0160815

    CAS  Article  Google Scholar 

  19. 19.

    Cheung GS, Peng B, Bian Z, Shen Y, Darvell BW (2005) Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J 38:802–809. https://doi.org/10.1111/j.1365-2591.2005.01020.x

    CAS  Article  Google Scholar 

  20. 20.

    Mize SB, Clement DJ, Pruett JP, Carnes DL Jr (1998) Effect of sterilization on cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 24:843–847. https://doi.org/10.1016/S0099-2399(98)80015-0

    CAS  Article  Google Scholar 

  21. 21.

    Cheung GSP, Darvell BW (2007) Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int Endod J 40:626–632. https://doi.org/10.1111/j.1365-2591.2007.01257

    CAS  Article  Google Scholar 

  22. 22.

    Zelada G, Varela P, Martin B, Bahillo JG, Magan F, Ahn S (2002) The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 28:540–542. https://doi.org/10.1097/00004770-200207000-00014

    Article  Google Scholar 

  23. 23.

    Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C (1999) Dynamic and cyclic fatigue of engine-driven rotary nickel titanium endodontic instruments. J Endod 25:434–440. https://doi.org/10.1016/S0099-2399(99)80274-X

    CAS  Article  Google Scholar 

  24. 24.

    Malagnino VA, Passariello P, Corsaro S (1999) The influence of root canal trajectory on the risk of cyclic fatigue failure on Ni-Ti engine driven endodontic instruments. G Ital Endod 13:190–200

    Google Scholar 

  25. 25.

    Ruddle C (2002) Cleaning and shaping the root canal system. In: Cohen S, Burns RC (eds) Pathways of the pulp, 8th edn. Mosby, St. Louis, pp 231–292

    Google Scholar 

  26. 26.

    ISO 3630-1:2008, Dentistry - Root-canal instruments – Part 1: General requirements and test methods

  27. 27.

    Council on Dental Materials and Devices (1976) New ADA Specification N. 28 for endodontic files and reamers. J Am Dent Assoc 93:813–818. https://doi.org/10.14219/jada.archive.1976.0087

    Article  Google Scholar 

  28. 28.

    Plotino G, Cordaro M, Grande NM, Testarelli L, Gambarini G (2009) A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod 35:1469–1476. https://doi.org/10.1016/j.joen.2009.06.015

    Article  Google Scholar 

  29. 29.

    Schneider SW (1971) A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol 32:271–275. https://doi.org/10.1016/0030-4220(71)90230-1

    CAS  Article  Google Scholar 

  30. 30.

    Kitchens GG, Liewehr FR, Moon PC (2007) The effect of operational speed on the fracture of nickel-titanium rotary instruments. J Endod 33:52–54. https://doi.org/10.1016/j.joen.2006.09.004

    Article  Google Scholar 

  31. 31.

    Cheung GSP, Darvell BW (2007) Fatigue testing of a NiTi rotary instrument. Part 1: strain-life relationship. Int Endod J 40:612–618. https://doi.org/10.1111/j.1365-2591.2007.01262.x

    CAS  Article  Google Scholar 

  32. 32.

    Zinelis S, Darabara M, Takase T, Ogane K, Papadimitriou GD (2007) The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue. Oral Surg, Oral Med, Oral Pathol Oral Radiol Endod 103:843–847. https://doi.org/10.1016/j.tripleo.2006.12.026

    Article  Google Scholar 

  33. 33.

    Yared GM, Bou Dagher FE, Machtou P (2000) Cyclic fatigue of profile rotary instruments after clinical use. Int Endod J 33:204–207. https://doi.org/10.1046/j.1365-2591.1999.00296.x

    CAS  Article  Google Scholar 

  34. 34.

    De Melo MC, Bahia MGA, Buono VTL (2002) Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments. J Endod 28:765–769. https://doi.org/10.1097/00004770-200211000-00005

    Article  Google Scholar 

  35. 35.

    Barbosa FOG, Gomes JA, De Araujo MCP (2007) Influence of previous angular deformation on flexural fatigue resistance of K3 nickel-titanium rotary instruments. J Endod 33:1477–1480. https://doi.org/10.1016/j.joen.2007.08.014

    Article  Google Scholar 

  36. 36.

    Anderson ME, Price JWH, Parashos P (2007) Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J Endod 33:1212–1216. https://doi.org/10.1016/j.joen.2007.07.007

    Article  Google Scholar 

  37. 37.

    Bulem UK, Kececi AD, Guldas HE (2013) Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Appl Oral Sci 21:505–510. https://doi.org/10.1590/1679-775720130083

    CAS  Article  Google Scholar 

  38. 38.

    La Rosa G, Clienti C, Lo Savio F (2014) Fatigue analysis by acoustic emission and thermographic techniques. Procedia Eng 74:261–268. https://doi.org/10.1016/j.proeng.2014.06.259

    Article  Google Scholar 

  39. 39.

    Gibkes J, Siegert W, Dietzel D, Delgadillo-Holtfort I, Bein BK, Pelzl J (2004) Local influence of material processing on phase transitions in NiTi shape memory alloys investigated by IR thermography. Mater Sci Eng A 378:175–179. https://doi.org/10.1016/j.msea.2003.10.343

    CAS  Article  Google Scholar 

  40. 40.

    Risitano A, La Rosa G, Geraci A, Guglielmino E (2015) The choice of thermal analysis to evaluate the monoaxial fatigue strength on materials and mechanical components. Proc Inst Mech Eng Pt C J Mechan Eng Sci 229:1315–1326. https://doi.org/10.1177/0954406215572429

    Article  Google Scholar 

  41. 41.

    Fargione G, Geraci A, La Rosa G, Risitano A (2002) Rapid determination of the fatigue curve by Thermographic method. Int J Fatigue 24:11–19. https://doi.org/10.1016/S0142-1123(01)00107-4

    Article  Google Scholar 

  42. 42.

    Fargione G, Giudice F, Risitano A (2017) The influence of the load frequency on the high cycle fatigue behavior. Theor Appl Fract Mec 88:97–106. https://doi.org/10.1016/j.tafmec.2016.12.004

    CAS  Article  Google Scholar 

  43. 43.

    Castro Da Silva T, Da Silva EP (2015) Experimental evaluation of the emissivity of a NiTi alloy, 23rd ABCM International Congress of Mechanical Engineering, December 6–11, 2015, Rio de Janeiro, Brazil

  44. 44.

    Carvalho A, Montalvão D, Freitas M, Reis L, Fonte M (2016) Determination of the rotary fatigue life of NiTi alloy wires. Theor Appl Fract Mech 85:37–44. https://doi.org/10.1016/j.tafmec.2016.08.010

    CAS  Article  Google Scholar 

  45. 45.

    Lopez I, Goldberg J, Burstone CJ (1979) Bending characteristics of nitinol wire. Am J Orthod 75:569–575. https://doi.org/10.1016/0002-9416(79)90075-7

    CAS  Article  Google Scholar 

  46. 46.

    Lee MH, Versluis A, Kim BM, Lee CJ, Hur B, Kim HC (2011) Correlation between experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium rotary files. J Endod 37:1152–1157. https://doi.org/10.1016/j.joen.2011.03.025

    Article  Google Scholar 

  47. 47.

    Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, Gandolfi MG, Prati C (2016) HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J 49:483–493. https://doi.org/10.1111/iej.12470

    CAS  Article  Google Scholar 

  48. 48.

    Elsaka SE, Elnaghy AM (2015) Cyclic fatigue resistance of OneShape and WaveOne instruments using different angles of curvature. Dent Mater J 34:358–363. https://doi.org/10.4012/dmj.2014-252

    CAS  Article  Google Scholar 

  49. 49.

    Gambarini G (2018) Fatigue resistance of new and used nickel-titanium rotating instruments: a comparative study. Clin Ter 169(3):96–101. https://doi.org/10.7417/T.2018.2061

    Article  Google Scholar 

  50. 50.

    Shooshtari A, Kalhori H, Masoodian A (2011) Investigation for dimension effect on mechanical behavior of a metallic curved micro-cantilever beam. Measurement 44:454–465. https://doi.org/10.1016/j.measurement.2010.11.006

    Article  Google Scholar 

  51. 51.

    Auricchio F, Taylor RL, Lubliner J (1997) Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput Method Appl M 146:281–312. https://doi.org/10.1016/S0045-7825(96)01232-7

    Article  Google Scholar 

  52. 52.

    Cheung GSP, Zhang EW, Zheng YF (2011) A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J 44:357–361. https://doi.org/10.1111/j.1365-2591.2010.01838.x

    CAS  Article  Google Scholar 

  53. 53.

    Berutti E, Chiandussi G, Gaviglio I, Ibba A (2003) Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J Endod 29:15–19. https://doi.org/10.1097/00004770-200301000-00005

    Article  Google Scholar 

  54. 54.

    Montalvão D, Shengwena Q, Freitas M (2014) A study on the influence of Ni-Ti M-wire in the flexural fatigue life of endodontic rotary files by using finite element analysis. Mater Sci Eng C 40:172–179. https://doi.org/10.1016/j.msec.2014.03.061

    CAS  Article  Google Scholar 

  55. 55.

    Makade C, Shenoi P, Khapre R, Shori D, Sonarkar S (2015) Finite element analysis and comparison of Protaper and Hero endodontic file segments subjected to bending and torsional load. Endodontology 27:14–19

    Google Scholar 

  56. 56.

    Lobo PS, Almeida J, Guerreiro L (2015) Shape memory alloys behaviour: a review. Procedia Eng 114:776–783. https://doi.org/10.1016/j.proeng.2015.08.025

    CAS  Article  Google Scholar 

  57. 57.

    Uslu G, Ozyurek T, Gundogar M, Yilmaz K (2018) Cyclic fatigue resistance of 2Shape, twisted file and EndoSequence Xpress nickel-titanium rotary files at intracanal temperature. J Dent Res Dent Clin Dent Prospects 12:283–287. https://doi.org/10.15171/joddd.2018.044

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Lo Savio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A cyclic fatigue-bending machine, able to test endodontic instruments, is proposed.

• Contact points, to change the file configuration, rotate freely minimizing friction.

• The device is able to monitor thermal changes on endodontic files while testing.

• The device allows the real-time bending force measure on the file up to the breakage.

• The device is able to reproduce any anatomical geometry that the root canal can take.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lo Savio, F., La Rosa, G., Bonfanti, M. et al. Novel Cyclic Fatigue Testing Machine for Endodontic Files. Exp Tech 44, 649–665 (2020). https://doi.org/10.1007/s40799-020-00386-5

Download citation

Keywords

  • Nickel-titanium rotary files
  • Cyclic fatigue
  • Bending testing machine
  • Predictive thermographic tests