Skip to main content

Advertisement

Log in

Optimizing Weight Percentage of MWCNTs for Enhancing LVI Resistance of Quasi-Isotropic Symmetric Laminate of Carbon Woven Fabric/ Epoxy Embedded with MWCNTs

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This research work investigates the energy absorption, and damage tolerance behavior of three phased (carbon woven/epoxy/multiwall carbon nanotubes) polymer composites. Five doping weight fractions of multi-wall carbon nanotubes (MWCNTs) are considered as 0, 1, 2, 3 and 4 wt.% of thermosetting epoxy resins. Low-velocity impact (LVI) tests are conducted on drop tower setup with three different velocities, 3.5, 4.5 and 5.5 m/s. Damage caused by a 10 kg, hemispherical headed cylindrical impactor is analyzed and compared. The experimental results showed an increase in the energy absorption up to 3 wt.% of the MWCNT doping. However, reinforcing above this percentage, the energy absorption is reduced due to the formation of MWCNT agglomerations. Therefore, this work proposed an optimized doping percentage for CFRP laminates. The maximum improvement of 51.83% in energy absorption was found at 3 wt.% of MWCNT reinforcement in epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eydani M, Niezrecki C, Sherwood J, Avitabile P (2016) Shock & vibration, aircraft/aerospace, energy harvesting, acoustics & optics, vol 9

    Google Scholar 

  2. Asl ME, Niezrecki C, Sherwood J, Avitabile P Similitude analysis of composite I-beams with application to subcomponent testing of wind turbine blades. Experimental and Applied Mechanics 4:115–126. https://doi.org/10.1007/978-3-319-22449-7_14

    Google Scholar 

  3. Handschuh KM, Miller GS, Sinnott MJ, Kohlman LW, Roberts GD, Pereira JM, Ruggeri RC (2015) Society for the advancement of materials and process engineering. Covina, CA, United States

    Google Scholar 

  4. Agrawal S, Singh KK, Sarkar PK Impact damage on fibre-reinforced polymer matrix composite – A review. J Compos Mater 48(3):317–332. https://doi.org/10.1177/0021998312472217

    Article  Google Scholar 

  5. Hufenbach W, Ibraim FM, Langkamp A, Böhm R, Hornig A (2008) Charpy impact tests on composite structures – an experimental and numerical investigation. Compos Sci Technol 68:2391–2400. https://doi.org/10.1016/j.compscitech.2007.10.008

    Article  CAS  Google Scholar 

  6. Schweizerhof TRK, Weimar K, Münz T (1998) 5th Int. LS-DYNA Users Conf. Southfield, Michigan

    Google Scholar 

  7. Rawat P, Singh KK (2017) An impact behavior analysis of CNT-based fiber reinforced composites validated by LS-DYNA: a review. Polym Compos 38:175–184. https://doi.org/10.1002/pc.23573

    Article  CAS  Google Scholar 

  8. S R Reid ZZ (2000) Impact behaviour of fibre-reinforced composite materials and structures. Woodhead Publishing Ltd. and CRC Press LLC

  9. Singh KK, Singh RK, Chandel PS, Kumar P (2008) An asymmetric FRP laminate with a circular precrack to determine impact-induced damage. Polym Compos 29:1378–1383. https://doi.org/10.1002/pc.20422

    Article  CAS  Google Scholar 

  10. Singh KK, Singh NK, Jha R (2016) Analysis of symmetric and asymmetric glass fiber reinforced plastic laminates subjected to low-velocity impact. J Compos Mater 50:1853–1863. https://doi.org/10.1177/0021998315596594

    Article  Google Scholar 

  11. Singh NK, Rawat P, Singh KK (2016) Impact response of quasi-isotropic asymmetric carbon fabric/epoxy laminate infused with MWCNTs. Adv Mater Sci Eng 2016:1–7. https://doi.org/10.1155/2016/7541468

    Article  CAS  Google Scholar 

  12. Angrizani CC, Cioffi MO, Zattera AJ, Amico SC (2014) Analysis of curaua/glass hybrid interlayer laminates. J Reinf Plast Compos 33:472–478. https://doi.org/10.1177/0731684413517519

    Article  CAS  Google Scholar 

  13. Pandya KS, Pothnis JR, Ravikumar G, Naik NK (2013) Ballistic impact behavior of hybrid composites. Mater Des 44:128–135. https://doi.org/10.1016/j.matdes.2012.07.044

    Article  CAS  Google Scholar 

  14. Hosur MV, Adbullah M, Jeelani S (2005) Studies on the low-velocity impact response of woven hybrid composites. Compos Struct 67(3):253–262. https://doi.org/10.1016/j.compstruct.2004.07.024

    Article  Google Scholar 

  15. Richardson MOW, Wisheart MJ (1996) Review of low-velocity impact properties of composite materials. Compos A: Appl Sci Manuf 27(12):1123–1131. https://doi.org/10.1016/1359-835X(96)00074-7

    Article  Google Scholar 

  16. Wang H, Ramakrishnan KR, Shankar K (2016) Experimental study of the medium velocity impact response of sandwich panels with different cores. Mater Des 99:68–82. https://doi.org/10.1016/j.matdes.2016.03.048

    Article  CAS  Google Scholar 

  17. Wang J, Chen B, Wang H, Waas AM (2015) Experimental study on the compression-after-impact behavior of foam-core sandwich panels. J Sandw Struct Mater 17:446–465. https://doi.org/10.1177/1099636215577367

    Article  CAS  Google Scholar 

  18. Ashrafi B, Guan J, Mirjalili V, Zhang Y, Chun L, Hubert P, Simard B, Kingston CT, Bourne O, Johnston A (2011) Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos Sci Technol 71:1569–1578. https://doi.org/10.1016/j.compscitech.2011.06.015

    Article  CAS  Google Scholar 

  19. Koricho EG, Khomenko A, Haq M, Drzal LT, Belingardi G, Martorana B (2015) Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite. Compos Struct 134:789–798. https://doi.org/10.1016/j.compstruct.2015.08.106

    Article  Google Scholar 

  20. Kostopoulos V, Baltopoulos A, Karapappas P, Vavouliotis A, Paipetis A (2010) Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos Sci Technol 70:553–563. https://doi.org/10.1016/j.compscitech.2009.11.023

    Article  CAS  Google Scholar 

  21. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  22. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844. https://doi.org/10.1063/1.122911

    Article  CAS  Google Scholar 

  23. Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Paipetis A (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43:977–985. https://doi.org/10.1177/0021998308097735

    Article  CAS  Google Scholar 

  24. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 71:1089–1097. https://doi.org/10.1016/j.compscitech.2011.03.014

    Article  CAS  Google Scholar 

  25. Hull D, Shi YB (1993) Damage mechanism characterization in composite damage tolerance investigations. Compos Struct 23:99–120. https://doi.org/10.1016/0263-8223(93)90015-I

    Article  Google Scholar 

  26. Siegfried M, Tola C, Claes M, Lomov SV, Verpoest I, Gorbatikh L (2014) Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Compos Struct 111:488–496. https://doi.org/10.1016/j.compstruct.2014.01.035

    Article  Google Scholar 

  27. Koricho EG, Khomenko A, Haq M, Drzal LT, Belingardi G, Martorana B (2015) Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite. Compos Struct 134:789–798. https://doi.org/10.1016/j.compstruct.2015.08.106

    Article  Google Scholar 

  28. Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A (2015) Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct 133:1116–1126. https://doi.org/10.1016/j.compstruct.2015.08.028

    Article  Google Scholar 

  29. Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos Sci Technol 75:42–48. https://doi.org/10.1016/j.compscitech.2012.12.005

    Article  CAS  Google Scholar 

  30. Soliman EM, Sheyka MP, Taha MR (2012) Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes. Int J Impact Eng 47:39–47. https://doi.org/10.1016/j.ijimpeng.2012.03.002

    Article  Google Scholar 

  31. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36:1525–1535. https://doi.org/10.1016/j.compositesa.2005.02.007

    Article  CAS  Google Scholar 

  32. Rachmadini Y, Tan VBC, Tay TE (2010) Enhancement of mechanical properties of composites through incorporation of CNT in VARTM - a review. J Reinf Plast Compos 29:2782–2807. https://doi.org/10.1177/0731684409359103

    Article  CAS  Google Scholar 

  33. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon N Y 43:1378–1385. https://doi.org/10.1016/j.carbon.2005.01.007

    Article  CAS  Google Scholar 

  34. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  35. Sevkat E, Liaw B, Delale F (2013) Drop-weight impact response of hybrid composites impacted by impactor of various geometries. Mater Des 52:67–77. https://doi.org/10.1016/j.matdes.2013.05.016

    Article  CAS  Google Scholar 

  36. Silberschmidt V (2016) Dynamic deformation, damage and fracture in composite materials and structures 1st Edition. Woodhead Publishing Ltd

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rawat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, P., Singh, K., Singh, N. et al. Optimizing Weight Percentage of MWCNTs for Enhancing LVI Resistance of Quasi-Isotropic Symmetric Laminate of Carbon Woven Fabric/ Epoxy Embedded with MWCNTs. Exp Tech 43, 719–728 (2019). https://doi.org/10.1007/s40799-019-00328-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-019-00328-w

Keywords

Navigation