Development of a Low-Cost Single-Axis Shake Table Based on Arduino

Abstract

Experimental setup for studying the behavior of structures are large and require high investment costs. However, comparing theoretical results to the dynamic behavior of structures using scaled structure models is a preferred research method in civil engineering. Therefore, a low-cost shake table named SARSAR with Arduino microcontroller boards has been developed for earthquake simulations. The horizontal components of the acceleration records obtained from past earthquakes are scaled and transferred to the shake table by developing software programs using an Arduino DUE board. For verification, the response of the table is measured by a data acquisition unit based on an Arduino MEGA board. The seismic ground motion along the horizontal axis is transferred to the shake table via a linear actuator system built with a ball screw assembly, linear bearings and a stepper motor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Benedetti D, Carydis P, Pezzoli P (1998) Shaking table tests on 24 simple masonry buildings. Earthq Eng Struct Dyn 27:67–90. https://doi.org/10.1002/(SICI)1096-9845(199801)27:1<67::AID-EQE719>3.0.CO;2-K

    Article  Google Scholar 

  2. 2.

    Kim SE, Lee DH, Ngo-Huu C (2007) Shaking table tests of a two-story unbraced steel frame. J Constr Steel Res 63:412–421. https://doi.org/10.1016/j.jcsr.2006.04.009

    Article  Google Scholar 

  3. 3.

    Ozcelik O, Luco JE, Conte JP (2008) Identification of the mechanical subsystem of the NEES-UCSD shake table by a least-squares approach. J Eng Mech 134:23–34. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:1(23)

    Article  Google Scholar 

  4. 4.

    Ozcelik O, Luco JE, Conte JP et al (2008) Experimental characterization, modeling and identification of the NEES-UCSD shake table mechanical system. Earthq Eng Struct Dyn 37:243–264. https://doi.org/10.1002/eqe.754

    Article  Google Scholar 

  5. 5.

    Kawamata Y, Nakayama M, Towhata I, Yasuda S (2016) Dynamic behaviors of underground structures in E-defense shaking experiments. Soil Dyn Earthq Eng 82:24–39. https://doi.org/10.1016/j.soildyn.2015.11.008

    Article  Google Scholar 

  6. 6.

    Zhang R, Lauenstein PV, Phillips BM (2016) Real-time hybrid simulation of a shear building with a uni-axial shake table. Eng Struct 119:217–229. https://doi.org/10.1016/j.engstruct.2016.04.022

    Article  Google Scholar 

  7. 7.

    Yang TY, Li K, Lin JY et al (2015) Development of high-performance shake tables using the hierarchical control strategy and nonlinear control techniques. Earthq Eng Struct Dyn 44:1717–1728. https://doi.org/10.1002/eqe.2551

    Article  Google Scholar 

  8. 8.

    Saranik M, Lenoir D, Jézéquel L (2012) Shaking table test and numerical damage behaviour analysis of a steel portal frame with bolted connections. Comput Struct 112–113:327–341. https://doi.org/10.1016/j.compstruc.2012.07.009

    Article  Google Scholar 

  9. 9.

    Shao X, Enyart G (2014) Development of a versatile hybrid testing system for seismic experimentation. Exp Tech 38:44–60. https://doi.org/10.1111/j.1747-1567.2012.00837.x

    Article  Google Scholar 

  10. 10.

    Harris HG, Sabnis GM (1999) Structural modeling and experimental techniques, 2nd edn. CRC Press

  11. 11.

    Kınay G (2006) Construction and control of a desktop earthquake simulator. MSc Thesis, İzmir Institute of Technology, Turkey

  12. 12.

    Quanser Shake Table II Product Information Sheet. https://www.quanser.com/wp-content/uploads/2017/03/Shake-Tables-and-Smart-Structures-Datasheet-v1.6.pdf. Accessed 14 Sept 2018

  13. 13.

    Testbox-shaketable | Teknik Destek Grubu. http://www.teknikdestek.com.tr/en/urun/16/testbox-shaketable?category_id=6. Accessed 23 Feb 2017

  14. 14.

    Nakata N (2010) Acceleration trajectory tracking control for earthquake simulators. Eng Struct 32:2229–2236. https://doi.org/10.1016/j.engstruct.2010.03.025

    Article  Google Scholar 

  15. 15.

    Trombetti TL, Conte JP (2002) Shaking table dynamics: results from a test-analysis comparison study. J Earthq Eng 6:513–551. https://doi.org/10.1142/S1363246902000917

    Google Scholar 

  16. 16.

    Kuehn J, Epp D, Patten WN (1999) High-fidelity control of a seismic shake table. Earthq Eng Struct Dyn 28:1235–1254. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11<1235::AID-EQE864>3.0.CO;2-H

    Article  Google Scholar 

  17. 17.

    Guan G-F, Wang H-T, Xiong W (2015) Multi-input multi-output random vibration control of a multi-axis electro-hydraulic shaking table. J Vib Control 21:3292–3304. https://doi.org/10.1177/1077546314521444

    Article  Google Scholar 

  18. 18.

    Luco JE, Ozcelik O, Conte JP (2010) Acceleration tracking performance of the UCSD-NEES shake table. J Struct Eng 136:481–490. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000137

    Article  Google Scholar 

  19. 19.

    Torun A, Çunkaş M (2009) Implementation and Design of a Shaking Table Oscillating in two-Axis. AKU J Sci Eng:85–96

  20. 20.

    Sinha P, Rai DC (2009) Development and performance of single-axis shake table for earthquake simulation. Curr Sci 96:1611–1620

    Google Scholar 

  21. 21.

    Arduino. https://www.arduino.cc/. Accessed 5 Feb 2016

  22. 22.

    Candelas FA, Garcia GJ, Puente S, et al (2015) Experiences on using Arduino for laboratory experiments of automatic control and robotics. In: IFAC-PapersOnLine. pp 105–110. https://doi.org/10.1016/j.ifacol.2015.11.221

  23. 23.

    Ali AS, Zanzinger Z, Debose D, Stephens B (2016) Open source building science sensors (OSBSS): a low-cost Arduino-based platform for long-term indoor environmental data collection. Build Environ 100:114–126. https://doi.org/10.1016/j.buildenv.2016.02.010

    Article  Google Scholar 

  24. 24.

    Chac R, Oller S (2014) Designing experiments using digital fabrication in structural dynamics. J Prof Issues Eng Educ Pract 143:1–9. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000315

    Google Scholar 

  25. 25.

    Fatehnia M, Paran S, Kish S, Tawfiq K (2016) Automating double ring infiltrometer with an Arduino microcontroller. Geoderma 262:133–139. https://doi.org/10.1016/j.geoderma.2015.08.022

    Article  Google Scholar 

  26. 26.

    Ferdoush S, Li X (2014) Wireless sensor network system design using raspberry pi and Arduino for environmental monitoring applications. In: Procedia Comput. Sci. pp 103–110. https://doi.org/10.1016/j.procs.2014.07.059

  27. 27.

    (2014) NEES Instructional Shake Table (ITS100). https://datacenterhub.org/resources/8036/download/ITS100_User_Manual_V1.pdf. Accessed 14 Sept 2018

  28. 28.

    Hamiche H, Guermah S, Saddaoui R et al (2015) Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board. Nonlinear Dyn 81:1921–1932. https://doi.org/10.1007/s11071-015-2116-z

    Article  Google Scholar 

  29. 29.

    Anzalone GC, Glover AG, Pearce JM (2013) Open-source colorimeter. Sensors (Switzerland) https://doi.org/10.3390/s130405338

  30. 30.

    Fisher DK, Gould PJ (2012) Open-source hardware is a low-cost alternative for scientific instrumentation and research. Mod Instrum. https://doi.org/10.4236/mi.2012.12002

  31. 31.

    Wittbrodt BT, Glover AG, Laureto J et al (2013) Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics. https://doi.org/10.1016/j.mechatronics.2013.06.002

  32. 32.

    Koenka IJ, Sáiz J, Hauser PC (2014) Instrumentino: an open-source modular Python framework for controlling Arduino based experimental instruments. Comput Phys Commun. https://doi.org/10.1016/j.cpc.2014.06.007

  33. 33.

    DS1302 Library. http://www.rinkydinkelectronics.com/library.php?id=5. Accessed 5 Feb 2016

  34. 34.

    Matlab release (2017b) Computer programme. The MathWorks, Inc., Natick

    Google Scholar 

  35. 35.

    PEER Ground Motion Database - PEER Center. http://ngawest2.berkeley.edu/. Accessed 5 Feb 2016

Download references

Acknowledgments

The authors thank to Koray Gürkan from the Electric and Electronics Department, Cenk Alhan and Savaş Erdem from the Civil Engineering Department and Yener Taşkın from the Mechanical Engineering Department of Istanbul University-Cerrahpaşa for their Contribution and help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Damcı.

Electronic supplementary material

Online Resource 1

Arduino code for the data acquisition part of the control unit of shake table SARSAR is given in the file ESM_1.txt. (TXT 9.48 kb)

Online Resource 2

Arduino code for the simulation of ±60 mm simple harmonic motion at 0.2 Hz is given in the file ESM_2. txt. (TXT 87.2 kb)

Online Resource 3

Arduino code for the simulation of ±40 mm simple harmonic motion at 1.75 Hz is given in the file ESM_3. txt. (TXT 57.5 kb)

Online Resource 4

Arduino code for the simulation 1999 Düzce Earthquake in 1/15 displacement scale is given in the file ESM_4. txt. (TXT 202 kb)

Online Resource 5

Arduino code for the simulation 1994 Northridge Earthquake in 1/15 displacement scale is given in the file ESM_5. txt. (TXT 171 kb)

Appendices

Appendix 1

Table 4 Prices of the main components of shake table SARSAR

Appendix 2

Videos for earthquake and harmonic motion simulations can be found at www.sarsar.net.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damcı, E., Şekerci, Ç. Development of a Low-Cost Single-Axis Shake Table Based on Arduino. Exp Tech 43, 179–198 (2019). https://doi.org/10.1007/s40799-018-0287-5

Download citation

Keywords

  • Earthquake shaking table
  • Arduino
  • Earthquake simulation
  • Structural dynamics
  • Earthquake engineering