Advertisement

Experimental Techniques

, Volume 42, Issue 2, pp 177–189 | Cite as

A Novel Approach for Monitoring Plastic Flow Localization during In-Situ Sem Testing of Small-Scale Samples

  • M. Mirzajanzadeh
  • D. Canadinc
  • T. Niendorf
  • A. Weidner
Article
  • 184 Downloads

Abstract

A novel method is proposed for monitoring the plastic flow localization during in-situ scanning electron microscopy (SEM) testing of small-scale AISI 316 L stainless steel. Stress-strain behavior of the material was obtained using a hybrid numerical-experimental (HNE) approach. By repeatedly illustrating each pair of sequentially taken SEM surface images throughout the deformation history in alternating order in form of a video, location of the material points which are not moving during the deformation can be detected. At the initial stages of deformation these points are located on the geometrical symmetry line of the test sample, however; when uniform straining limit of the material is reached, the locations of the stationary material points reveal the plastic localization regions. The current results clearly prove the feasibility of the presented method in monitoring primary plastic localization events through in-situ SEM tensile testing.

Keywords

Plastic flow localization In-situ SEM Microstructure Ductile fracture Small scale testing 

Notes

Acknowledgements

Financial supports by Koç University Graduate School of Sciences and Engineering; Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany; and the CRC 799 subproject B5 are gratefully acknowledged. AW acknowledges Dr. Jiri Man of the Institute of Physics of Materials Brno (IMP, Czech Academy of Science Brno) for providing the 316 L steel.

Supplementary material

40799_2017_212_MOESM1_ESM.mp4 (12.6 mb)
ESM 1 (MP4 12,859 kb)
40799_2017_212_MOESM2_ESM.mp4 (15.4 mb)
ESM 2 (MP4 15,787 kb)
40799_2017_212_MOESM3_ESM.mp4 (20.9 mb)
ESM 3 (MP4 21,411 kb)
40799_2017_212_MOESM4_ESM.mp4 (13.6 mb)
ESM 4 (MP4 13,892 kb)
40799_2017_212_MOESM5_ESM.mp4 (22.1 mb)
ESM 5 (MP4 22,675 kb)

References

  1. 1.
    Rogers HC (1960) The tensile fracture of ductile metals. Trans Metall Soc AIME 218(3):498–506Google Scholar
  2. 2.
    Tekoğlu C, Hutchinson JW, Pardoen T (2015) On localization and void coalescence as a precursor to ductile fracture. Philos Trans R Soc A Math Phys Eng Sci 373(2038):20140121CrossRefGoogle Scholar
  3. 3.
    Morgeneyer TF, Helfen L, Mubarak H, Hild F (2013) 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp Mech 53(4):543–556CrossRefGoogle Scholar
  4. 4.
    Hosokawa A, Wilkinson DS, Kang J, Maire E (2013) Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography. Acta Mater 61(4):1021–1036CrossRefGoogle Scholar
  5. 5.
    Lecarme L, Maire E, Kumar KC A, De Vleeschouwer C, Jacques L, Simar A, Pardoen T (2014) Heterogenous void growth revealed by in situ 3-D X-ray microtomography using automatic cavity tracking. Acta Mater 63:130–139CrossRefGoogle Scholar
  6. 6.
    Rice, J. R. (1976). The localization of plastic deformation (pp. 207–220). Division of Engineering, Brown UniversityGoogle Scholar
  7. 7.
    Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18(4):237–252Google Scholar
  8. 8.
    Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48(12):2467–2512CrossRefGoogle Scholar
  9. 9.
    Benzerga AA, Leblond JB (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305CrossRefGoogle Scholar
  10. 10.
    Ruggieri C (2004) Numerical investigation of constraint effects on ductile fracture in tensile specimens. J Braz Soc Mech Sci Eng 26(2):190–199CrossRefGoogle Scholar
  11. 11.
    Morin L, Leblond JB, Tvergaard V (2016) Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings. J Mech Phys Solids 94:148–166CrossRefGoogle Scholar
  12. 12.
    Jiang W, Li Y, Su J (2016) Modified GTN model for a broad range of stress states and application to ductile fracture. Eur J Mech A Solids 57:132–148CrossRefGoogle Scholar
  13. 13.
    Mirzajanzadeh M, Canadinc D (2016) A microstructure-sensitive model for simulating the impact response of a high-manganese austenitic steel. J Eng Mater Technol 138(4):041004CrossRefGoogle Scholar
  14. 14.
    Tschopp MA, Bartha BB, Porter WJ, Murray PT, Fairchild SB (2009) Microstructure-dependent local strain behavior in polycrystals through in-situ scanning electron microscope tensile experiments. Metall Mater Trans A 40(10):2363–2368CrossRefGoogle Scholar
  15. 15.
    Walley JL, Wheeler R, Uchic MD, Mills MJ (2012) in-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech 52(4):405–416CrossRefGoogle Scholar
  16. 16.
    Papasidero J, Doquet V, Lepeer S (2014) Multiscale investigation of ductile fracture mechanisms and strain localization under shear loading in 2024-T351 aluminum alloy and 36NiCrMo16 steel. Mater Sci Eng A 610:203–219CrossRefGoogle Scholar
  17. 17.
    Kammers AD, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53(9):1743–1761CrossRefGoogle Scholar
  18. 18.
    Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787CrossRefGoogle Scholar
  19. 19.
    Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR et al (2007) Scanning electron microscopy for quantitative small and large deformation measurements part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804CrossRefGoogle Scholar
  20. 20.
    Weck A, Wilkinson DS, Maire E (2008) Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography. Mater Sci Eng A 488(1):435–445CrossRefGoogle Scholar
  21. 21.
    LePage WS, Daly SH, Shaw JA (2016) Cross polarization for improved digital image correlation. Exp Mech 56(0):969–985CrossRefGoogle Scholar
  22. 22.
    Swanson Analysis Systems Inc. ANSYS, Revision 15Google Scholar
  23. 23.
    Swanson Analysis Systems Inc, 2007. ANSYS, Release 15. Contact Technology Guide. Swanson Analysis Systems Inc (Chapter 3). Surface-to-Surface ContactGoogle Scholar
  24. 24.
    Online: http://www.physlink.com/Reference/FrictionCoefficients.cfm, web site of Physlink.com containing coefficients of static and kinetic friction

Copyright information

© The Society for Experimental Mechanics, Inc 2017

Authors and Affiliations

  • M. Mirzajanzadeh
    • 1
  • D. Canadinc
    • 1
    • 2
  • T. Niendorf
    • 3
  • A. Weidner
    • 4
  1. 1.Department of Mechanical Engineering, Advanced Materials Group (AMG)Koç UniversityİstanbulTurkey
  2. 2.Koç University Surface Science and Technology Center (KUYTAM)İstanbulTurkey
  3. 3.Institut für Werkstofftechnik (Institute of Materials Engineering)Universität KasselKasselGermany
  4. 4.Institute of Materials EngineeringTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations