Skip to main content
Log in

Fillet Punch Creep Test of Aluminum Alloy 2024-T851: A New Method to Assess Creep Properties of Materials

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In this paper, a small specimen method to evaluate creep properties of materials is proposed. It is a modified form of Shear Punch Creep Test that has a small fillet at the end of the punch that is named Fillet Punch Creep Test (FPCT) for simplicity. The activation energy and the Larson-Miller constant of Al2024-T851 are determined using FPCT. The FPCT results closely match the results of Uniaxial Creep Test using the Larson-Miller parameter to convert shear stress of FPCT to equivalent normal stress of Uniaxial Creep Test. The experimental results show the validity of FPCT to evaluate the creep properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. ASTM (2013) ASTM E8/E8M – 13a

  2. Hyde CJ, Hyde TH, Sun W, Nardone S, Bruycker ED (2013) Small ring testing of a creep resistant material. Mater Sci Eng A 586:358–366. doi:10.1016/j.msea.2013.07.081

    Article  Google Scholar 

  3. Hyde TH, Sun W, Becker AA (1996) Analysis of the impression creep test method using a rectangular indenter for determining the creep properties in welds. Int J Mech Sci 38:1089–1102. doi:10.1016/0020-7403(95)00112-3

    Article  Google Scholar 

  4. Kabirian F, Mahmudi R (2009) Effects of rare earth element additions on the impression creep behavior of AZ91 magnesium alloy. Metall Mater Trans A 40:2190–2201. doi:10.1007/s11661-009-9905-2

    Article  Google Scholar 

  5. Manhan MP, Argon AS, Harling OK (1981) The development of a minioturized disk bend test for the determination of post-irradiation mechanical properties. J Nucl Mater 103 &104:1545–1550. doi:10.1016/0022-3115(82)90820-0

    Article  Google Scholar 

  6. Shibli IA, Holdsworth SR (2005) Creep and fracture in high temperature components – design and life assessment issues. DESTech Publications, London, pp 336–349

    Google Scholar 

  7. CEN (2007) Workshop Agreement, CWA 15627, Small Punch Test Method for Metallic Materials, CEN, Brussels, Belgium, 6–39

  8. Nobakhti H, Soltani N (2016) Evaluating small punch test as accelerated creep test using larson-miller parameter. Exp Tech 40:645–650. doi:10.1007/s40799-016-0067-z

    Article  Google Scholar 

  9. Alizadeh R, Mahmudi R, Esfandyarpour MJ (2011) Shear punch creep test: a novel localized method for evaluating creep properties. Scr Mater 64:442–445. doi:10.1016/j.scriptamat.2010.11.007

    Article  Google Scholar 

  10. Karthik V, Visweswaran P, Vijayraghavan A, Kasiviswanathan KV, Raj B (2009) Tensile–shear correlations obtained from shear punch test technique. J Nucl Mater 393:425–432. doi:10.1016/j.jnucmat.2009.06.027

    Article  Google Scholar 

  11. Larson FR, Miller J (1952) A time-temperature relationship for rupture and creep stresses. Trans ASME 74:765–771

    Google Scholar 

  12. Kaufman JG (2008) Parametric analyses of high-temperature data for aluminum alloys. ASM Int

  13. Sherby OD, Dorn JE (1952) Creep correlations in alpha solid solutions of aluminum. Trans ASME 194:959–964

    Google Scholar 

  14. Boresi AP, Schmidt RJ (2002) Advanced mechanics of materials, 6th edn. John Wiley & Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Soltani, N. & Nobakhti, H. Fillet Punch Creep Test of Aluminum Alloy 2024-T851: A New Method to Assess Creep Properties of Materials. Exp Tech 41, 59–67 (2017). https://doi.org/10.1007/s40799-016-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-016-0160-3

Keywords

Navigation