Skip to main content
Log in

Experimental and Numerical Acoustic Characterization of Laminated Floors

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This work has focused on characterizing laminated floors from the sound perception perspective. There are two main aspects in this work. The first is an alternative proposed for experimental characterization, which consists in recording the sound generated by the impact of a steel ball when it falls on a laminated floor from a known height. The second is a numerical hybrid FEM-FDTD model. The numerical model uses FEM to simulate the mechanical part of the experiment when the ball impacts the floor. The results are implemented into a FDTD algorithm to take into account the acoustic part of the problem and to obtain the sound pressure level of the microphone. This numerical model is useful for identifying laminated floors if the mechanical properties of the material are known, and to characterize them from the sound perception perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Código Técnico de la Edificación, CTE. DB-HR “Protección frente al ruido”.

  2. A.C.C. Warnock. “Impact Sound Ratings: ASTM versus ISO”. The 33rd International Congress and Exposition on Noise Control Engineering, Praga, República Checa; Agosto 2004.

  3. M. Kylliäinen. “Standard deviations in field measurements of impact sound insulation”. Insinööritoimisto Heikki Helimäki Oy Lindforsinkatu 10 B 20, 33720 Tampere, Finland. Junio 2004.

  4. ASTM E989 – 06. “Standard Classification for Determination of Impact Insulation Class (IIC)”.

  5. UNE-EN ISO 717–2:1997/A1:2007. “Rating of sound insulation in buildings and of building elements, Impact sound insulation”.

  6. UNE-EN ISO 140–6:1999. “Laboratory measurements of impact sound insulation of floors”.

  7. Association of European Producers of Laminate Flooring (EPLF). “Drum sound properties of laminate floorings,” Germany, 2004.

  8. Association of European Producers of Laminate Flooring. “Laminate floor coverings-Determination of drum sound generate by means of a tapping machine,” EPLF drum sound test norm 021029–3, Germany, 2004.

  9. Gadea, J.M., Ramis, J., Vera, J., and Yebra, M.S., Un Método Simple Para la Evaluación Experimental del Efecto Tambor Para Suelos Laminados, Tecniacústica, Gandia, España (2006).

  10. Gadea Borrell, J.M., Segura Alcaraz, J.G., Vera Guarinos, J., Francés Monllor, J., Alba Fernández, J., and Carbajo Sanmartín, J., Contribución a la evaluación acústica de suelos laminados Acústica, Universidade de Coimbra, Coimbra, Portugal (2008 20–22 de Outubro).

  11. Gadea Borrell, J.M. Estudio del comportamiento acústico de recubrimientos de suelo derivados de la madera, Tesis Doctoral, ISBN: 9781109421828.

  12. Sueyoshi, S., Miyazaki, Y., and Morikawa, T., “Physiological and Psychological Responses to Prolonged Light Floor-Impact Sounds Generated by a Tapping Machine in a Wooden House,” Journal of Wood Science 50: 494–497 ©The Japan Wood Research Society 2004 (2004).

  13. Cho, T., “Experimental and Numerical Analysis of Floating Floor Resonance and Its Effect on Impact Sound Transmission,” Journal of Sound and Vibration 332: 6552–6561 (2013).

    Article  Google Scholar 

  14. Faustino, J., Pereira, L., Soares, S., et al., “Impact Sound Insulation Technique Using Corn Cob Particleboard,” Construction and Building Materials 37: 153–159 (2012).

    Article  Google Scholar 

  15. Semprini, G., and Cocchi, A., “Investigation on the Flanking Transmission of Impact Sound Insulation of Floor,” Journal of Acoustical Society of America 115: 2581 (2004).

    Article  Google Scholar 

  16. Warnock, A., “Low-Frequency Impact Sound Rating of Floor Systems,” Journal of Acoustical Society of America 108: 2611 (2000).

    Google Scholar 

  17. Baron N., “Some Acoustical Properties of Floating Floors used on Trains”. Tesis doctoral. TRITA-AVE 2004:24. ISSN 1651–7660 2, Sweden, 2004.

  18. Johansson A-C, Drum sound from floor coverings – Objective and subjective assessment, Tesis Doctoral, LTH TVBA-1012, Sweden, (2005).

  19. Johansson, A.-C., Hammer, P., and Nilsson, E., “Prediction of Subjective Response from Objective Measurements Applied to Walking Sound,” Acta Acustica United with Acustica 90: 161–170 (2004).

    Google Scholar 

  20. Yee, K.S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas Propagation 14: 302–307 (1996).

    Google Scholar 

  21. Mur, G., “Absorbing Boundary Conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Transactions on Electromagnetic compatibility 23: 377–382 (1981).

    Article  Google Scholar 

  22. Highdon, R.L., “Absorbing Boundary Conditions for Difference Approximation to the Multidimensional Wave Equation,” Mathematics of computation 47: 437–459 (1986).

    Google Scholar 

  23. Highdon, R.L., “Numerical Absorbing Boundary Conditions for the Wave Equation,” Mathematics of computation 49: 65–90 (1987).

    Article  Google Scholar 

  24. Yuan, X., Borup, D., Wiskin, J.W., Berggren, M., Eidens, R., and Johnson, S.A., “Formulation and Validation of Berenger’s PML Absorbing Boundary for the FDTD Simulation of Acoustic Scattering, IEEE Transactions on Ultrasonics,” Ferroelectrics and Frequency Control 44(4): 816–822 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Julia Sanchis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrell, J.M.G., Alcaraz, J.G.S. & Sanchis, E.J. Experimental and Numerical Acoustic Characterization of Laminated Floors. Exp Tech 40, 857–863 (2016). https://doi.org/10.1007/s40799-016-0086-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-016-0086-9

Keywords

Navigation