Skip to main content

Advertisement

Log in

In Utero Gene Editing for Inherited Lung Diseases

  • Genome Editing (Y Fan & J Chan, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In utero gene editing has unique potential to treat monogenic lung diseases efficiently and before the need for lung function. This review explores the current status of the field highlighting key advances in understanding and insight required to deliver safe, effective, and durable therapies to correct a range of lung diseases.

Recent Findings

Several important studies have been recently published demonstrating independently both the potential of gene editing in the lung and the ability to deliver relevant vectors and gene editing reagents to the fetal lung environment. These results demonstrate the complex capabilities and insights required to successfully apply gene editing to the fetal lung.

Summary

Ongoing efforts to advance gene editing, vector design and delivery of these platforms support the potential to exploit the unique characteristics of the fetal lung for the treatment of monogenic lung diseases before birth. Future studies will be required to demonstrate the feasibility of these approaches in small and large animal models as well as culture systems of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet. 2018;34:600–11.

    Article  CAS  PubMed  Google Scholar 

  2. Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the molecular scissors: advances in gene-editing technology. iScience. 2020;23:100789.

  3. Suzuki K, Izpisua-Belmonte JC. In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet. 2018;63:157–64.

    Article  CAS  PubMed  Google Scholar 

  4. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

    Article  CAS  PubMed  Google Scholar 

  5. Jeong YK, Song B, Bae S. Current status and challenges of DNA base editing tools. Mol Ther. 2020;28:1938–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, Ramadoss GN, Shi Q, Hung KL, Samelson AJ, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–19.

    Article  PubMed  Google Scholar 

  7. Editas Medicine, Inc. Open-Label, Single Ascending Dose Study to Evaluate the Safety, Tolerability, and Efficacy of EDIT-101 in Adult and Pediatric Participants With Leber Congenital Amaurosis Type 10 (LCA10), With Centrosomal Protein 290 (CEP290)-Related Retinal Degeneration Caused by a Compound Heterozygous or Homozygous Mutation Involving c.2991+1655A>G in Intron 26 (IVS26) of the CEP290 Gene (“LCA10-IVS26”) [Internet]. clinicaltrials.gov; 2020 Dec [cited 2021 May 23]. Report No.: NCT03872479. Available from: https://clinicaltrials.gov/ct2/show/NCT03872479

  8. Intellia Therapeutics. Phase 1 Two-Part (Open-label, Single Ascending Dose (Part 1) and Open-label, Single Dose Expansion (Part 2)) Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of NTLA-2001 in Patients With Hereditary Transthyretin Amyloidosis With Polyneuropathy (ATTRv-PN) [Internet]. clinicaltrials.gov; 2020 Dec [cited 2021 May 23]. Report No.: NCT04601051. Available from: https://clinicaltrials.gov/ct2/show/NCT04601051

  9. Vertex Pharmaceuticals Incorporated. A Phase 1/2 Study to Evaluate the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (CTX001) in Subjects With Severe Sickle Cell Disease [Internet]. clinicaltrials.gov; 2021 Jan [cited 2021 May 23]. Report No.: NCT03745287. Available from: https://clinicaltrials.gov/ct2/show/NCT03745287

  10. •• Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502. Findings from this landmark clinical study using lipid nanoparticle delivery of CRISPR-Cas9 mRNA to knockout TTR in hereditary ATTR amyloidosis demonstrate, for the first time, early efficacy and safety of therapeutic in vivo gene editing in humans.

  11. Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem. 2008;77:701–26.

    Article  CAS  PubMed  Google Scholar 

  12. Pezzulo AA, Tang XX, Hoegger MJ, Abou-Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Treacy K, Tunney M, Elborn S, Bradley J. Mucociliary clearance in cystic fibrosis: physiology and pharmacological treatments. Paediatr Child Health. 2011;21:425–30.

    Article  Google Scholar 

  14. Maule G, Arosio D, Cereseto A. Gene therapy for cystic fibrosis: progress and challenges of genome editing. Int J Mol Sci. 2020;21:3903.

    Article  CAS  PubMed Central  Google Scholar 

  15. Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin Biol Ther. 2021;21:767–80.

    Article  CAS  PubMed  Google Scholar 

  16. Alton EWFW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV, Boyd AC, Brand J, Buchan R, Calcedo R, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3:684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, Clancy JP, Spencer LT, Pilewski J, Waltz DA, Dorkin HL, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther. 2007;18:726–32.

    Article  CAS  PubMed  Google Scholar 

  18. Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, Le W, Baik R, de la O S, Kaushik MP, et al. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia. Cell Stem Cell. 2020;26:161–71.

  19. • Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, et al. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther. 2021. Findings from this study demonstrate a high level of CRISPR-Cas9-mediated CFTR correction in airway stem cells in vitro illustrating the potential for ex-vivo correction followed by implantation or for a direct in vivo approach.

  20. Gupta A, Zheng SL. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child. 2017;102:84–90.

    Article  PubMed  Google Scholar 

  21. Palomar LM, Nogee LM, Sweet SC, Huddleston CB, Cole FS, Hamvas A. Long-term outcomes after infant lung transplantation for surfactant protein B deficiency related to other causes of respiratory failure. J Pediatr. 2006;149:548–53.

    Article  PubMed  Google Scholar 

  22. Kang MH, van Lieshout LP, Xu L, Domm JM, Vadivel A, Renesme L, Mühlfeld C, Hurskainen M, Mižíková I, Pei Y, et al. A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency. Nat Commun. 2020;11:3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Alapati D, Zacharias WJ, Hartman HA, Rossidis AC, Stratigis JD, Ahn NJ, Coons B, Zhou S, Li H, Singh K, et al. In utero gene editing for monogenic lung disease. Sci Transl Med. 2019;11. Findings from this proof-of-concept mouse study demonstrated the feasibility and potential of in utero CRISPR gene editing to target pulmonary epithelial cells and mitigate the phenotype of a perinatal lethal genetic lung disease.

  24. Bessis N, GarciaCozar FJ. Boissier M-C Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11:S10–7.

    Article  CAS  PubMed  Google Scholar 

  25. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther. 2020;28:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, McElvaney NG. α1-antitrypsin deficiency. Nat Rev Dis Primers. 2016;2:1–17.

    Article  Google Scholar 

  27. Quinn M, Ellis P, Pye A, Turner AM. Obstacles to early diagnosis and treatment of alpha-1 antitrypsin deficiency: current perspectives. Ther Clin Risk Manag. 2020;16:1243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brantly ML, Paul LD, Miller BH, Falk RT, Wu M, Crystal RG. Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis. 1988;138:327–36.

    Article  CAS  PubMed  Google Scholar 

  29. Tanash HA, Ekström M, Rönmark E, Lindberg A, Piitulainen E. Survival in individuals with severe alpha 1-antitrypsin deficiency (PiZZ) in comparison to a general population with known smoking habits. Eur Respir J. 2017;50:1700198.

    Article  PubMed  Google Scholar 

  30. Tanash HA, Nilsson PM, Nilsson J-Å, Piitulainen E. Survival in severe alpha-1-antitrypsin deficiency (PiZZ). Respir Res. 2010;11:44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chiuchiolo MJ, Crystal RG. Gene therapy for alpha-1 antitrypsin deficiency lung disease. Ann Am Thorac Soc. 2016;13:S352–69.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chapman KR, Burdon JGW, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM, Stoel BC, Huang L, Yao Z, Edelman JM, et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386:360–8.

    Article  CAS  PubMed  Google Scholar 

  33. Song C, Wang D, Jiang T, O’Connor K, Tang Q, Cai L, Li X, Weng Z, Yin H, Gao G, et al. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther. 2018;29:853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen S, Sanchez ME, Blomenkamp K, Corcoran EM, Marco E, Yudkoff CJ, Jiang H, Teckman JH, Bumcrot D, Albright CF. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther. 2018;29:861–73.

    Article  CAS  PubMed  Google Scholar 

  35. Pickles RJ. Physical and biological barriers to viral vector-mediated delivery of genes to the airway epithelium. Proc Am Thorac Soc. 2004;1:302–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61:115–27.

    Article  CAS  PubMed  Google Scholar 

  37. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123:3025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrari S, Griesenbach U, Geddes DM, Alton E. Immunological hurdles to lung gene therapy. Clin Exp Immunol. 2003;132:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davey MG, Riley JS, Andrews A, Tyminski A, Limberis M, Pogoriler JE, Partridge E, Olive A, Hedrick HL, Flake AW, et al. Induction of immune tolerance to foreign protein via adeno-associated viral vector gene transfer in mid-gestation fetal sheep. PLoS One. 2017;12:e0171132.

  40. Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood. 2002;100:2225–34.

    Article  CAS  PubMed  Google Scholar 

  41. Riley JS, McClain LE, Stratigis JD, Coons BE, Ahn NJ, Li H, Loukogeorgakis SP, Fachin CG, Dias AIBS, Flake AW, et al. Regulatory T cells promote alloengraftment in a model of late-gestation in utero hematopoietic cell transplantation. Blood Adv. 2020;4:1102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li A, Tanner MR, Lee CM, Hurley AE, Giorgi MD, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther. 2020;28:1432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25:249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bose SK, White BM, Kashyap MV, Dave A, De Bie FR, Li H, Singh K, Menon P, Wang T, Teerdhala S, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun. 2021;12:4291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H, Singh K, Coons BE, Li L, Lv W, et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med. 2018;24:1513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schene IF, Joore IP, Oka R, Mokry M, van Vugt AHM, van Boxtel R, van der Doef HPJ, van der Laan LJW, Verstegen MMA, van Hasselt PM, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11:5352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X. Efficient generation of mouse models with the prime editing system. Cell Discov. 2020;6:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steines B, Dickey DD, Bergen J, Excoffon KJDA, Weinstein JR, Li X, Yan Z, Abou-Alaiwa MH, Shah VS, Bouzek DC, et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight. 2016;1:e88728.

  49. Tang Y, Yan Z, Engelhardt JF. Viral vectors, animal models, and cellular targets for gene therapy of cystic fibrosis lung disease. Hum Gene Ther. 2020;31:524–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Y, Zhi S, Liu W, Wen J, Hu S, Cao T, Sun H, Li Y, Huang L, Liu Y, et al. Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods. 2020;4:2000309.

    Article  CAS  Google Scholar 

  51. Ryu S-M, Koo T, Kim K, Lim K, Baek G, Kim S-T, Kim HS, Kim D, Lee H, Chung E, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018;36:536–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181:136–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeh W-H, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Medi. 2020;12.

  54. Venditti CP. Safety questions for AAV gene therapy. Nat Biotechnol. 2021;39:24–6.

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, Wood C, Assenmacher C-A, Merricks EP, Long CT, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39:47–55.

    Article  CAS  PubMed  Google Scholar 

  56. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. PNAS. 2021;118.

  58. Suzuki Y, Onuma H, Sato R, Sato Y, Hashiba A, Maeki M, Tokeshi M, Kayesh MEH, Kohara M, Tsukiyama-Kohara K, et al. Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. J Control Release. 2021;330:61–71.

    Article  CAS  PubMed  Google Scholar 

  59. Parhiz H, Shuvaev VV, Pardi N, Khoshnejad M, Kiseleva RY, Brenner JS, Uhler T, Tuyishime S, Mui BL, Tam YK, et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release. 2018;291:106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krishnamurthy S, Wohlford-Lenane C, Kandimalla S, Sartre G, Meyerholz DK, Théberge V, Hallée S, Duperré A-M, Del’Guidice T, Lepetit-Stoffaes J-P, et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat Commun. 2019;10:4906.

  61. Chittasupho C, Xie S-X, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci. 2009;37:141–50.

    Article  CAS  PubMed  Google Scholar 

  62. Manunta MDI, Tagalakis AD, Attwood M, Aldossary AM, Barnes JL, Munye MM, Weng A, McAnulty RJ, Hart SL. Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Sci Rep. 2017;7:700.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Allon N, Saxena A, Chambers C, Doctor BP. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release. 2012;160:217–24.

    Article  CAS  PubMed  Google Scholar 

  64. Riley RS, Kashyap MV, Billingsley MM, White B, Alameh M-G, Bose SK, Zoltick PW, Li H, Zhang R, Cheng AY, et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7:eaba1028.

  65. Whitwell H, Mackay R-M, Elgy C, Morgan C, Griffiths M, Clark H, Skipp P, Madsen J. Nanoparticles in the lung and their protein corona: the few proteins that count. Nanotoxicology. 2016;10:1385–94.

    Article  CAS  PubMed  Google Scholar 

  66. Palchetti S, Digiacomo L, Pozzi D, Peruzzi G, Micarelli E, Mahmoudi M, Caracciolo G. Nanoparticles-cell association predicted by protein corona fingerprints. Nanoscale. 2016;8:12755–63.

    Article  CAS  PubMed  Google Scholar 

  67. Chen D, Ganesh S, Wang W, Amiji M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale. 2019;11:8760–75.

    Article  CAS  PubMed  Google Scholar 

  68. Azarnezhad A, Samadian H, Jaymand M, Sobhani M, Ahmadi A. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol. 2020;50:148–76.

    Article  CAS  PubMed  Google Scholar 

  69. Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines. 2021;9:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, et al. Nanoparticles for delivery of agents to fetal lungs. Acta Biomater. 2021;123:346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Winkler SM, Harrison MR, Messersmith PB. Biomaterials in fetal surgery Biomater Sci. 2019;7:3092–109.

    Article  CAS  PubMed  Google Scholar 

  72. Hii L-Y, Sung C-A, Shaw SW. Fetal surgery and stem cell therapy for meningomyelocele. Curr Opin Obstet Gynecol. 2020;32:147–51.

    Article  PubMed  Google Scholar 

  73. Zwiers C, Lindenburg ITM, Klumper FJ, de Haas M, Oepkes D, Kamp ILV. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017;50:180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deprest JA, Nicolaides KH, Benachi A, Gratacos E, Ryan G, Persico N, Sago H, Johnson A, Wielgoś M, Berg C, et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N Engl J Med. 2021;385:107–18.

    Article  PubMed  Google Scholar 

  75. Russo FM, Cordier A-G, Basurto D, Salazar L, Litwinska E, Gomez O, Debeer A, Nevoux J, Patel S, Lewi L, et al. Fetal endoscopic tracheal occlusion reverses the natural history of right-sided congenital diaphragmatic hernia: European multicenter experience. Ultrasound Obstet Gynecol. 2021;57:378–85.

    Article  CAS  PubMed  Google Scholar 

  76. Carlon MS, Engels AC, Bosch B, Joyeux L, da Cunha MGMCM, Vidović D, Debyser Z, Boeck KD, Neyrinck A, Deprest JA. A novel translational model for fetoscopic intratracheal delivery of nanoparticles in piglets. Prenat Diagn. 2016;36:926–34.

  77. Carlon M, Toelen J, der Perren AV, Vandenberghe LH, Reumers V, Sbragia L, Gijsbers R, Baekelandt V, Himmelreich U, Wilson JM, et al. Efficient gene transfer into the mouse lung by fetal intratracheal injection of rAAV2/6.2. Mol Ther. 2010;18:2130–8.

  78. Xue C, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 2021;37:639–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants R01HL151352 (W.H.P. and E.E.M.), DP2HL152427 (W.H.P.), and U01HL148857 (E.E.M.) from the United States National Institute of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Peranteau.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genome Editing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, B.M., Morrisey, E.E. & Peranteau, W.H. In Utero Gene Editing for Inherited Lung Diseases. Curr Stem Cell Rep 8, 44–52 (2022). https://doi.org/10.1007/s40778-021-00205-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-021-00205-6

Keywords

Navigation