Skip to main content
Log in

The Fetal Hematopoietic Niche: Components and Mechanisms for Hematopoietic Stem Cell Emergence and Expansion

  • Cell:Cell Interactions in Stem Cell Maintenance (D Lucas, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hematopoiesis is the process of generating all blood and immune cells, which is fueled at the root by self-renewing multipotent hematopoietic stem cells (HSCs). Unlike other systems in the body, hematopoiesis occurs in several waves in different organs (yolk sac, AGM, placenta, embryonic head, fetal liver, and fetal spleen) across ontogeny until it settles down in the bone marrow and remains there throughout adult life. Within a given hematopoietic organ, the microenvironmental niche plays critical roles in regulating HSCs and hematopoiesis by elaborating cytokines and other factors. Interestingly, under pathologic conditions in adults, hematopoiesis can be re-initiated in organs that are hematopoietic during fetal stages, such as the spleen and liver. Here we will review recent progresses on the identification of cellular components and mechanisms in these hematopoietic niches. We will also compare and contrast the niches to identify outstanding questions that are still unsolved in hematopoietic niche biology.

Recent Findings

Over the past several years, cutting-edge technologies have been applied to uncover the nature and mechanisms of the adult and fetal hematopoietic niches across tissues and organs in vivo. A general theme of the hematopoietic niche where endothelial cells and perivascular mesenchymal stromal cells are the core components is emerging.

Summary

In contrast to the maintenance niche in the adult bone marrow, the fetal hematopoietic niches promote HSC emergence and expansion. Elucidating the fetal hematopoietic niche mechanisms will help devise ways to amplify HSCs for clinical use. The on-and-off nature of the fetal hematopoietic niche suggests that the hematopoietic niche is highly dynamic. Understanding these dynamic changes offers the opportunity to harness the niche to promote hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

      •• Of major importance

      1. Lee Y, Decker M, Lee H, Ding L. Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases. Wiley Interdiscip Rev Dev Biol. 2017;6(5):279.

      2. Mikkola HKA, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44.

        Article  CAS  PubMed  Google Scholar 

      3. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

        Article  CAS  PubMed  Google Scholar 

      4. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021; 56(13):1848-60.

      5. Chen JY, Miyanishi M, Wang SK, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530(7589):223–7.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      6. Acar M, Kocherlakota KS, Murphy MM, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–30.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      7. Upadhaya S, Krichevsky O, Akhmetzyanova I, Sawai CM, Fooksman DR, Reizis B. Intravital imaging reveals motility of adult hematopoietic stem cells in the bone marrow niche. Cell Stem Cell. 2020;27(2):336–45.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      8. Christodoulou C, Spencer JA, Yeh SA, et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature. 2020;578(7794):278–83.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      9. •• Zhang J, Wu Q, Johnson CB, et al. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature. 2021;590(7846):457–62. This study developed markers to localize myelo-progenitors and revealed heterogeneity within the bone marrow niche.

      10. Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.

        Article  CAS  PubMed  Google Scholar 

      11. Himburg HA, Termini CM, Schlussel L, et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell. 2018;23(3):370–81.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      12. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      13. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      14. Greenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      15. Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature. 2014;508(7497):536–40.

        Article  CAS  PubMed  Google Scholar 

      16. Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32(5–6):359–72.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      17. Derecka M, Herman JS, Cauchy P, et al. EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nat Immunol. 2020;21(3):261–73.

        Article  CAS  PubMed  Google Scholar 

      18. Kusumbe AP, Ramasamy SK, Itkin T, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature. 2016;532(7599):380–4.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      19. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell. 2019;24(3):477–86.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      20. Cordeiro Gomes A, Hara T, Lim VY, et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 2016;45(6):1219–31.

        Article  CAS  PubMed  Google Scholar 

      21. Shen B, Tasdogan A, Ubellacker JM, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature. 2021;591(7850):438–44.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      22. Tikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569(7755):222–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      23. Baryawno N, Przybylski D, Kowalczyk MS, et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 2019;177(7):1915–32.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      24. Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2020;22(1):38–48.

        Article  CAS  PubMed  Google Scholar 

      25. Chen X, Deng H, Churchill MJ, et al. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell. 2017;21(6):747–60.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      26. Hirata Y, Furuhashi K, Ishii H, et al. CD150(high) Bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22(3):445–53.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      27. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.

        Article  CAS  PubMed  Google Scholar 

      28. Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      29. Decker M, Leslie J, Liu Q, Ding L. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science. 2018;360(6384):106–10.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      30. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell. 2017;169(5):807–23.

        Article  CAS  PubMed  Google Scholar 

      31. Agathocleous M, Meacham CE, Burgess RJ, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549(7673):476–81.

        Article  PubMed  PubMed Central  Google Scholar 

      32. Pitt LA, Tikhonova AN, Hu H, et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell. 2015;27(6):755–68.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      33. Agarwal P, Isringhausen S, Li H, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell. 2019;24(5):769–84.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      34. Decker M, Martinez-Morentin L, Wang G, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19(6):677–88.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      35. Leimkuhler NB, Gleitz HFE, Ronghui L, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021; 28(4):637-52.

      36. Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol. 2014;5:3.

        Article  PubMed  PubMed Central  Google Scholar 

      37. McGrath KE, Frame JM, Fegan KH, et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 2015;11(12):1892–904.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      38. Boiers C, Carrelha J, Lutteropp M, et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell. 2013;13(5):535–48.

        Article  PubMed  Google Scholar 

      39. McGrath KE, Koniski AD, Malik J, Palis J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood. 2003;101(5):1669–76.

        Article  CAS  PubMed  Google Scholar 

      40. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development. 2003;130(18):4393–403.

        Article  CAS  PubMed  Google Scholar 

      41. Azzoni E, Frontera V, McGrath KE, et al. Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep. 2018;19(10):e45477.

      42. Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J. Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells. 2016;34(2):431–44.

        Article  CAS  PubMed  Google Scholar 

      43. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464(7285):116–20.

        Article  CAS  PubMed  Google Scholar 

      44. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010;464(7285):108–11.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      45. Wilkinson RN, Pouget C, Gering M, et al. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell. 2009;16(6):909–16.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      46. Kim AD, Stachura DL, Traver D. Cell signaling pathways involved in hematopoietic stem cell specification. Exp Cell Res. 2014;329(2):227–33.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      47. Fadlullah MZ, Neo WH, Lie ALM, et al. Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood. 2021; 2020007885.

      48. Gu Q, Yang X, Lv J, et al. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science. 2019;363(6431):1085–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      49. Grainger S, Richter J, Palazon RE, et al. Wnt9a is required for the aortic amplification of nascent hematopoietic stem cells. Cell Rep. 2016;17(6):1595–606.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      50. Grainger S, Nguyen N, Richter J, et al. EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nat Cell Biol. 2019;21(6):721–30.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      51. •• Espin-Palazon R, Stachura DL, Campbell CA, et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell. 2014;159(5):1070–85. This study, together with several others, identified inflammatory signaling as an important regulator for HSC emergence from the AGM.

      52. Li Y, Esain V, Teng L, et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 2014;28(23):2597–612.

        Article  PubMed  PubMed Central  Google Scholar 

      53. Sawamiphak S, Kontarakis Z, Stainier DY. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev Cell. 2014;31(5):640–53.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      54. Frame JM, Kubaczka C, Long TL, et al. Metabolic regulation of inflammasome activity controls embryonic hematopoietic stem and progenitor cell production. Dev Cell. 2020;55(2):133–49.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      55. Mariani SA, Li Z, Rice S, et al. Pro-inflammatory aorta-associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity. 2019;50(6):1439–52.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      56. Fitch SR, Kimber GM, Wilson NK, et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell. 2012;11(4):554–66.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      57. Kwan W, Cortes M, Frost I, et al. The central nervous system regulates embryonic HSPC production via stress-responsive glucocorticoid receptor signaling. Cell Stem Cell. 2016;19(3):370–82.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      58. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8(3):365–75.

        Article  CAS  PubMed  Google Scholar 

      59. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8(3):377–87.

        Article  CAS  PubMed  Google Scholar 

      60. Rhodes KE, Gekas C, Wang Y, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2(3):252–63.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      61. Robin C, Ottersbach K, Durand C, et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell. 2006;11(2):171–80.

        Article  CAS  PubMed  Google Scholar 

      62. Chhabra A, Lechner AJ, Ueno M, et al. Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev Cell. 2012;22(3):651–9.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      63. Li Z, Lan Y, He W, et al. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell. 2012;11(5):663–75.

        Article  CAS  PubMed  Google Scholar 

      64. Li Z, Vink CS, Mariani SA, Dzierzak E. Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head. Dev Biol. 2016;416(1):34–41.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      65. Li Z, Mariani SA, Rodriguez-Seoane C, et al. A role for macrophages in hematopoiesis in the embryonic head. Blood. 2019;134(22):1929–40.

        PubMed  PubMed Central  Google Scholar 

      66. •• Tamplin OJ, Durand EM, Carr LA, et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell. 2015;160(1–2):241–52. This study used live imaging to identify a specific cuddling behavior of HSC niche in the CHT of zebrafish, the fetal liver equivalent in mice. It also revealed endothelilal cells and perivascular mesenchymal stromal cells as critical niche components.

      67. Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95(7):2284–8.

        Article  CAS  PubMed  Google Scholar 

      68. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA. 1995;92(22):10302–6.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      69. Chou S, Lodish HF. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc Natl Acad Sci USA. 2010;107(17):7799–804.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      70. Blaser BW, Moore JL, Hagedorn EJ, et al. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. J Exp Med. 2017;214(4):1011–27.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      71. Xue Y, Lv J, Zhang C, Wang L, Ma D, Liu F. The vascular niche regulates hematopoietic stem and progenitor cell lodgment and expansion via klf6a-ccl25b. Dev Cell. 2017;42(4):349–62.

        Article  CAS  PubMed  Google Scholar 

      72. Travnickova J, Tran Chau V, Julien E, et al. Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat Commun. 2015;6:6227.

        Article  PubMed  Google Scholar 

      73. Li D, Xue W, Li M, et al. VCAM-1(+) macrophages guide the homing of HSPCs to a vascular niche. Nature. 2018;564(7734):119–24.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      74. • Khan JA, Mendelson A, Kunisaki Y, et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science. 2016;351(6269):176–80. This study identified NG2+ periportal stromal cells as a candidate niche cell type for fetal liver HSCs.

      75. • Lee Y, Leslie J, Yang Y, Ding L. Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. J Exp Med. 2021;218(3):e20200882. This study performed the first systematic genetic dissection of the fetal liver niche and identified endothelial and stellate cells, a type of perisinusoidal mesenchymal stromal cells, as the major source of SCF for HSC maintenance.

      76. Liu C, Han T, Stachura DL, et al. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun. 2018;9(1):1310.

        Article  PubMed  PubMed Central  Google Scholar 

      77. Sigurdsson V, Takei H, Soboleva S, et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–32.

        Article  CAS  PubMed  Google Scholar 

      78. May A, Forrester LM. The erythroblastic island niche: modeling in health, stress, and disease. Exp Hematol. 2020;91:10–21.

        Article  CAS  PubMed  Google Scholar 

      79. Christensen JL, Wright DE, Wagers AJ, Weissman IL. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2004;2(3):E75.

        Article  PubMed  PubMed Central  Google Scholar 

      80. Bertrand JY, Desanti GE, Lo-Man R, Leclerc C, Cumano A, Golub R. Fetal spleen stroma drives macrophage commitment. Development. 2006;133(18):3619–28.

        Article  CAS  PubMed  Google Scholar 

      81. •• Inra CN, Zhou BO, Acar M, et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature. 2015;527(7579):466–71. This study identified endothelial cells and Tcf21+ perisinusoidal stromal cells as the major sources of key cytokines for HSCs in the extramedulary spleen.

      82. Coskun S, Chao H, Vasavada H, et al. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep. 2014;9(2):581–90.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      83. Isern J, Garcia-Garcia A, Martin AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife. 2014;3:e03696.

        Article  PubMed  PubMed Central  Google Scholar 

      84. Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell. 2014;29(3):330–9.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      85. Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16(12):1157–67.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      86. Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19(2):329–44.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      87. Mizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29(3):340–9.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      88. Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Investig. 2006;116(10):2808–16.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      89. Bowie MB, Kent DG, Dykstra B, et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci USA. 2007;104(14):5878–82.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      90. Li Y, Kong W, Yang W, et al. Single-cell analysis of neonatal HSC ontogeny reveals gradual and uncoordinated transcriptional reprogramming that begins before birth. Cell Stem Cell. 2020; 27(5):732-47.

      91. Nakada D, Oguro H, Levi BP, et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature. 2014;505(7484):555–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      92. Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      93. Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell. 2016;19(1):23–37.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      94. Sandler VM, Lis R, Liu Y, et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature. 2014;511(7509):312–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      95. Lis R, Karrasch CC, Poulos MG, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545(7655):439–45.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      96. Sugimura R, Jha DK, Han A, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      97. Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell. 2007;130(3):470–83.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      98. Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423(6937):302–5.

        Article  CAS  PubMed  Google Scholar 

      99. Hock H, Hamblen MJ, Rooke HM, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431(7011):1002–7.

        Article  CAS  PubMed  Google Scholar 

      100. Zhang CC, Kaba M, Ge G, et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med. 2006;12(2):240–5.

        Article  PubMed  PubMed Central  Google Scholar 

      101. Horton JD. Development and differentiation of vertebrate lymphocytes: review of the Durham symposium—September 1979. Dev Comp Immunol. 1980;4:177–81.

        Article  Google Scholar 

      102. • Kapp FG, Perlin JR, Hagedorn EJ, et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature. 2018;558(7710):445–8. This study identified melanocyte-mediated protection against UV light as a mechanism to protect HSCs in the niche.

      103. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity. 2003;19(2):257–67.

        Article  CAS  PubMed  Google Scholar 

      104. Smith-Berdan S, Nguyen A, Hassanein D, et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell. 2011;8(1):72–83.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      Download references

      Funding

      Hiroyuki Hirakawa received funding from the Uehara Memorial Foundation and the Japan Society for the Promotion of Science (JSPS). Yeojin Lee received funding from the Korea Foundation for Advanced Studies and the New York State Stem Cell Science (NYSTEM). Lei Ding received funding from the Rita Allen Foundation, the NIH (R01HL132074, R01HL153487 and R01HL155868), the Leukemia and Lymphoma Society, and the Irma Hirschl Foundation.

      Author information

      Authors and Affiliations

      Authors

      Corresponding author

      Correspondence to Lei Ding.

      Ethics declarations

      Conflict of Interest

      Hiroyuki Hirakawa, Yeojin Lee, and Lei Ding declare that they have no conflict of interest.

      Human and Animal Rights and Informed Consent

      All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

      Additional information

      Publisher's Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      Hiroyuki Hirakawa and Yeojin Lee contribute equally to this work.

      This article is part of the Topical Collection on Cell: Cell Interactions in Stem Cell Maintenance

      Rights and permissions

      Reprints and permissions

      About this article

      Check for updates. Verify currency and authenticity via CrossMark

      Cite this article

      Hirakawa, H., Lee, Y. & Ding, L. The Fetal Hematopoietic Niche: Components and Mechanisms for Hematopoietic Stem Cell Emergence and Expansion. Curr Stem Cell Rep 8, 14–23 (2022). https://doi.org/10.1007/s40778-021-00202-9

      Download citation

      • Accepted:

      • Published:

      • Issue Date:

      • DOI: https://doi.org/10.1007/s40778-021-00202-9

      Keywords

      Navigation