Skip to main content

Advertisement

Log in

Cancer Stem Cell Division: Mathematical Models and Insights

  • Mathematical Models of Stem Cell Behaviour (M Kohandel and M Przedborski, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tumors consist of heterogeneous cell types, which present challenges to effective therapeutics. This review intends to explore existing mathematical models to better understand the influence of these different types of cells on tumor growth and survival.

Recent Findings

Cancer stem cells are often the instigator of tumor development and drug resistance. The replenishment of the stem cells by other stem cells and progenitor cells impacts the efficacy of treatments. Multiple treatments are required to attack the multiple tumor cell types and induce remission. Mathematical models can be used to explore the behavior of these heterogeneous tumor cells, as well as predict the long-term efficacy of different therapies.

Summary

Cell division plays an integral role in the development of tumors. While mathematical models are generally robust, they must be updated frequently to accommodate the brisk pace of biological advances. Usable data to inform the models is scarce calling for better collaboration between these sciences to help advance the field of cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

    1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    2. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17(24):3029–35. https://doi.org/10.1101/gad.1143403.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    3. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. https://doi.org/10.1038/35102167.

      Article  CAS  PubMed  Google Scholar 

    4. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. https://doi.org/10.1038/nature05236.

      Article  CAS  PubMed  Google Scholar 

    5. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. https://doi.org/10.1158/0008-5472.CAN-06-2030.

      Article  CAS  PubMed  Google Scholar 

    6. Sellheyer K. Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol. 2011;164(4):696–711. https://doi.org/10.1111/j.1365-2133.2010.10158.x.

      Article  CAS  PubMed  Google Scholar 

    7. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33. https://doi.org/10.1038/nature09624.

      Article  CAS  PubMed  Google Scholar 

    8. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66. https://doi.org/10.1016/j.ccr.2008.01.013.

      Article  CAS  PubMed  Google Scholar 

    9. Zhang P, Zuo H, Ozaki T, Nakagomi N, Kakudo K. Cancer stem cell hypothesis in thyroid cancer. Pathol Int. 2006;56(9):485–9. https://doi.org/10.1111/j.1440-1827.2006.01995.x.

      Article  CAS  PubMed  Google Scholar 

    10. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9. https://doi.org/10.1016/j.cell.2009.08.017.

      Article  CAS  PubMed  Google Scholar 

    11. Natarajan TG, Ganesan N, Fitzgerald KT. Cancer stem cells and markers: new model of tumorigenesis with therapeutic implications. Cancer Biomark. 2010;9(1–6):65–99. https://doi.org/10.3233/CBM-2011-0173.

      Article  CAS  PubMed  Google Scholar 

    12. Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, et al. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget. 2015;6(42):44191–206. https://doi.org/10.18632/oncotarget.6176.

      Article  PubMed  PubMed Central  Google Scholar 

    13. Aghaalikhani N, Rashtchizadeh N, Shadpour P, Allameh A, Mahmoodi M. Cancer stem cells as a therapeutic target in bladder cancer. J Cell Physiol. 2019;234(4):3197–206. https://doi.org/10.1002/jcp.26916.

      Article  CAS  PubMed  Google Scholar 

    14. Parizadeh SM, Jafarzadeh-Esfehani R, Hassanian SM, Parizadeh SMR, Vojdani S, Ghandehari M, et al. Targeting cancer stem cells as therapeutic approach in the treatment of colorectal cancer. Int J Biochem Cell Biol. 2019;110:75–83. https://doi.org/10.1016/j.biocel.2019.02.010.

      Article  CAS  PubMed  Google Scholar 

    15. Visweswaran M, Arfuso F, Warrier S, Dharmarajan A. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Stem Cells. 2020;38(1):6–14. https://doi.org/10.1002/stem.3101.

      Article  CAS  PubMed  Google Scholar 

    16. Xu J, Liao K, Zhou W. Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int. 2018;2018:4837370. https://doi.org/10.1155/2018/4837370.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    17. Rhodes A, Hillen T. Mathematical modeling of the role of survivin on dedifferentiation and radioresistance in cancer. Bull Math Biol. 2016;78(6):1162–88. https://doi.org/10.1007/s11538-016-0177-x.

      Article  CAS  PubMed  Google Scholar 

    18. Marzagalli M, Fontana F, Raimondi M, Limonta P. Cancer stem cells-key players in tumor relapse. Cancers (Basel). 2021;13(3). https://doi.org/10.3390/cancers13030376.

    19. Ganguly R, Puri IK. Mathematical model for the cancer stem cell hypothesis. Cell Prolif. 2006;39(1):3–14. https://doi.org/10.1111/j.1365-2184.2006.00369.x.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    20. Ganguly R, Puri IK. Mathematical model for chemotherapeutic drug efficacy in arresting tumour growth based on the cancer stem cell hypothesis. Cell Prolif. 2007;40(3):338–54. https://doi.org/10.1111/j.1365-2184.2007.00434.x.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    21. Leder K, Holland EC, Michor F. The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One. 2010;5(12): e14366. https://doi.org/10.1371/journal.pone.0014366.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    22. Sehl ME, Sinsheimer JS, Zhou H, Lange KL. Differential destruction of stem cells: implications for targeted cancer stem cell therapy. Cancer Res. 2009;69(24):9481–9. https://doi.org/10.1158/0008-5472.Can-09-2070.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    23. Zhu X, Zhou X, Lewis MT, Xia L, Wong S. Cancer stem cell, niche and EGFR decide tumor development and treatment response: a bio-computational simulation study. J Theor Biol. 2011;269(1):138–49. https://doi.org/10.1016/j.jtbi.2010.10.016.

      Article  CAS  PubMed  Google Scholar 

    24. Busse JE, Gwiazda P, Marciniak-Czochra A. Mass concentration in a nonlocal model of clonal selection. J Math Biol. 2016;73(4):1001–33. https://doi.org/10.1007/s00285-016-0979-3.

      Article  PubMed  PubMed Central  Google Scholar 

    25. Enderling H, Hlatky L, Hahnfeldt P. Cancer Stem Cells: A minor cancer subpopulation that redefines global cancer features. Fronti Oncol. 2013;3(76). https://doi.org/10.3389/fonc.2013.00076.

    26. Liu X, Johnson S, Liu S, Kanojia D, Yue W, Singh UP, et al. Nonlinear growth kinetics of breast cancer stem cells: implications for cancer stem cell targeted therapy. Sci Rep. 2013;3:2473. https://doi.org/10.1038/srep02473.

      Article  PubMed  PubMed Central  Google Scholar 

    27. Molina-Pena R, Alvarez MM. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS One. 2012;7(2): e26233. https://doi.org/10.1371/journal.pone.0026233.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    28. • Molina-Pena R, Tudon-Martinez JC, Aquines-Gutierrez O. A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers (Basel). 2020;12(9). https://doi.org/10.3390/cancers12092590This article argues that a hierarchical model for cell type is relevant because progenitor cells play an integral role in the forming and sustaining tumors. The role of different cell types is examined as radiation therapy is given.

    29. Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z. Strategies for cancer stem cell elimination: insights from mathematical modeling. J Theor Biol. 2012;298:32–41. https://doi.org/10.1016/j.jtbi.2011.12.016.

      Article  PubMed  Google Scholar 

    30. Weekes SL, Barker B, Bober S, Cisneros K, Cline J, Thompson A, et al. A multicompartment mathematical model of cancer stem cell-driven tumor growth dynamics. Bull Math Biol. 2014;76(7):1762–82. https://doi.org/10.1007/s11538-014-9976-0.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    31. Yan H, Konstorum A, Lowengrub JS. Three-dimensional spatiotemporal modeling of colon cancer organoids reveals that multimodal control of stem cell self-renewal is a critical determinant of size and shape in early stages of tumor growth. Bull Math Biol. 2018;80(5):1404–33. https://doi.org/10.1007/s11538-017-0294-1.

      Article  PubMed  Google Scholar 

    32. Lionetti MC, Cola F, Chepizhko O, Fumagalli MR, Font-Clos F, Ravasio R, et al. MicroRNA-222 regulates melanoma plasticity. J Clin Med. 2020;9(8):2573.

      Article  CAS  Google Scholar 

    33. Sottoriva A, Verhoeff JJ, Borovski T, McWeeney SK, Naumov L, Medema JP, et al. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 2010;70(1):46–56. https://doi.org/10.1158/0008-5472.Can-09-3663.

      Article  CAS  PubMed  Google Scholar 

    34. Tonekaboni SAM, Dhawan A, Kohandel M. Mathematical modelling of plasticity and phenotype switching in cancer cell populations. Math Biosci. 2017;283:30–7. https://doi.org/10.1016/j.mbs.2016.11.008.

      Article  PubMed  Google Scholar 

    35. Zapperi S, La Porta CA. Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers. Sci Rep. 2012;2:441. https://doi.org/10.1038/srep00441.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    36. Afenya EK, Ouifki R, Camara BI, Mundle SD. Mathematical modeling of bone marrow–peripheral blood dynamics in the disease state based on current emerging paradigms, part I. Math Biosci. 2016;274:83–93. https://doi.org/10.1016/j.mbs.2016.01.010.

      Article  PubMed  Google Scholar 

    37. Afenya EK, Ouifki R, Mundle SD. Mathematical modeling of bone marrow - peripheral blood dynamics in the disease state based on current emerging paradigms, part II. J Theor Biol. 2019;460:37–55. https://doi.org/10.1016/j.jtbi.2018.10.008.ThisarticleincorporatesCSCastheirowncompartmentinacompartmentalmodelforhematologicalcancers.

      Article  PubMed  Google Scholar 

    38. Elliott SL, Kose E, Lewis AL, Steinfeld AE, Zollinger EA. Modeling the stem cell hypothesis: investigating the effects of cancer stem cells and TGF-β on tumor growth. Math Biosci Eng. 2019;16(6):7177–94. https://doi.org/10.3934/mbe.2019360.

      Article  PubMed  Google Scholar 

    39. Gentry SN, Jackson TL. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms. PLoS One. 2013;8(8): e71128. https://doi.org/10.1371/journal.pone.0071128.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    40. Hu GM, Lee CY, Chen YY, Pang NN, Tzeng WJ. Mathematical model of heterogeneous cancer growth with an autocrine signalling pathway. Cell Prolif. 2012;45(5):445–55. https://doi.org/10.1111/j.1365-2184.2012.00835.x.

      Article  CAS  PubMed  Google Scholar 

    41. • Sehl ME, Wicha MS. Modeling of interactions between cancer stem cells and their microenvironment: predicting clinical response. Methods Mol Biol. 2018;1711:333–49. https://doi.org/10.1007/978-1-4939-7493-1_16. This paper presents a stochastic model for breast cancer stem cell niche, and investigate the trajectories of different cell types.

    42. Yan H, Romero-Lopez M, Frieboes HB, Hughes CCW, Lowengrub JS. Multiscale modeling of glioblastoma suggests that the partial disruption of vessel/cancer stem cell crosstalk can promote tumor regression without increasing invasiveness. IEEE Trans Biomed Eng. 2017;64(3):538–48. https://doi.org/10.1109/TBME.2016.2615566.

      Article  PubMed  Google Scholar 

    43. Chen C, Baumann WT, Clarke R, Tyson JJ. Modeling the estrogen receptor to growth factor receptor signaling switch in human breast cancer cells. FEBS Lett. 2013;587(20):3327–34. https://doi.org/10.1016/j.febslet.2013.08.022.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    44. • Forouzannia F, Enderling H, Kohandel M. Mathematical modeling of the effects of tumor heterogeneity on the efficiency of radiation treatment schedule. Bull Math Biol. 2018;80(2):283–93. https://doi.org/10.1007/s11538-017-0371-5. The authors present a deterministic and a stochastic models to test the effects of tumor heterogeneity on the outcome of radiation therapy.

    45. Javadi A, Keighobadi F, Nekoukar V, Ebrahimi M. Finite-set model predictive control of melanoma cancer treatment using signaling pathway inhibitor of cancer stem cell. IEEE/ACM Trans Comput Biol Bioinform. 2019;PP. https://doi.org/10.1109/tcbb.2019.2940658.

    46. • Nazari F, Pearson AT, Nör JE, Jackson TL. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment. PLoS Comput Biol. 2018;14(1):e1005920. https://doi.org/10.1371/journal.pcbi.1005920. In this article, the authors design a cellular and molecular differential equations model for IL-6 mediated stem cell growth and tumor initiation.

    47. Sehl ME, Shimada M, Landeros A, Lange K, Wicha MS. Modeling of cancer stem cell state transitions predicts therapeutic response. PLoS One. 2015;10(9): e0135797. https://doi.org/10.1371/journal.pone.0135797.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    48. • Sigal D, Przedborski M, Sivaloganathan D, Kohandel M. Mathematical modelling of cancer stem cell-targeted immunotherapy. Math Biosci. 2019;318:108269. https://doi.org/10.1016/j.mbs.2019.108269. The article incorporates differentiation and dedifferentiation of dendritic cells and T-cells which are trained to either attack the CSC or non-stem cancer cells.

    49. Ward Rashidi MR, Mehta P, Bregenzer M, Raghavan S, Fleck EM, Horst EN, et al. Engineered 3D model of cancer stem cell enrichment and chemoresistance. Neoplasia. 2019;21(8):822–36. https://doi.org/10.1016/j.neo.2019.06.005.Thisarticleusesatwo-compartmentdifferentialequationsmodeltoanswerquestionsofchemoresistanceinovariancancer.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    50. Werner B, Scott JG, Sottoriva A, Anderson AR, Traulsen A, Altrock PM. The cancer stem cell fraction in hierarchically organized tumors can be estimated using mathematical modeling and patient-specific treatment trajectories. Cancer Res. 2016;76(7):1705–13. https://doi.org/10.1158/0008-5472.Can-15-2069.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    51. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 2017;50(3):117–25. https://doi.org/10.5483/bmbrep.2017.50.3.222.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    52. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38. https://doi.org/10.1016/j.stem.2015.02.015.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    53. Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev. 2015;24(4):405–16. https://doi.org/10.1089/scd.2014.0442.

      Article  PubMed  Google Scholar 

    54. Bu P, Chen K-Y, Chen Joyce H, Wang L, Walters J, Shin Yong J, et al. A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell. 2013;12(5):602–15. https://doi.org/10.1016/j.stem.2013.03.002.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    55. Enderling H. Cancer stem cells: small subpopulation or evolving fraction? Integr Biol (Camb). 2015;7(1):14–23. https://doi.org/10.1039/c4ib00191e.

      Article  PubMed  Google Scholar 

    56. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

      Article  CAS  PubMed  Google Scholar 

    57. López-Lázaro M. The stem cell division theory of cancer. Crit Rev Oncolo Hematol. 2018;123:95–113. https://doi.org/10.1016/j.critrevonc.2018.01.010.

      Article  PubMed  Google Scholar 

    58. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci. 2007;104(10):4008–13. https://doi.org/10.1073/pnas.0611179104.

      Article  CAS  Google Scholar 

    59. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Examples of mathematical modeling: tales from the crypt. Cell Cycle (Georgetown, Tex). 2007;6(17):2106–12. https://doi.org/10.4161/cc.6.17.4649.

      Article  CAS  PubMed Central  Google Scholar 

    60. • Renardy M, Jilkine A, Shahriyari L, Chou CS. Control of cell fraction and population recovery during tissue regeneration in stem cell lineages. J Theor Biol. 2018;445:33–50. https://doi.org/10.1016/j.jtbi.2018.02.017. This article presents a hierarchical stem cell lineage model and explores the necessity of feedback loops.

    61. Benitez L, Barberis L, Vellon L, Condat CA. Understanding the influence of substrate when growing tumorspheres. BMC Cancer. 2021;21(1):276. https://doi.org/10.1186/s12885-021-07918-1.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    62. Bessonov N, Pinna G, Minarsky A, Harel-Bellan A, Morozova N. Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. PLoS One. 2019;14(11): e0224787. https://doi.org/10.1371/journal.pone.0224787.ThisarticlepresentsaMarkovmodelforcelldivisionprobabilities.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    63. Guo C, Ahmed S, Guo C, Liu X. Stability analysis of mathematical models for nonlinear growth kinetics of breast cancer stem cells. Math Methods Appl Sci. 2017;40(14):5332–48. https://doi.org/10.1002/mma.4389.

      Article  Google Scholar 

    64. Scott JG, Dhawan A, Hjelmeland A, Lathia J, Chumakova A, Hitomi M, et al. Recasting the cancer stem cell hypothesis: unification using a continuum model of microenvironmental forces. Curr Stem Cell Rep. 2019;5(1):22–30. https://doi.org/10.1007/s40778-019-0153-0.

      Article  Google Scholar 

    65. Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015;7(1):27–36. https://doi.org/10.4252/wjsc.v7.i1.27.

      Article  PubMed  PubMed Central  Google Scholar 

    66. Carvalho J. Cell reversal from a differentiated to a stem-like state at cancer initiation. Front Oncol. 2020;10(541). https://doi.org/10.3389/fonc.2020.00541.

    67. Nakano M, Kikushige Y, Miyawaki K, Kunisaki Y, Mizuno S, Takenaka K, et al. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 2019;38(6):780–93. https://doi.org/10.1038/s41388-018-0480-0.

      Article  CAS  PubMed  Google Scholar 

    68. Wang P, Wan W-w, Xiong S-L, Feng H, Wu N. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Discov. 2017;3(1):16105. https://doi.org/10.1038/cddiscovery.2016.105.

    69. • Zhou D, Luo Y, Dingli D, Traulsen A. The invasion of de-differentiating cancer cells into hierarchical tissues. PLoS Comput Biol. 2019;15(7):e1007167. https://doi.org/10.1371/journal.pcbi.1007167. This article presents a hierarchical model which allows for age dedifferentiation and argues that dedifferentiation plays a vital role in maintain populations of early age classes.

    70. Jilkine A, Gutenkunst RN. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLoS Comput Biol. 2014;10(3): e1003481. https://doi.org/10.1371/journal.pcbi.1003481.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    71. Wang Y, Lo WC, Chou CS. Modelling stem cell ageing: a multi-compartment continuum approach. R Soc Open Sci. 2020;7(3): 191848. https://doi.org/10.1098/rsos.191848.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    72. Deleyrolle LP, Ericksson G, Morrison BJ, Lopez JA, Burrage K, Burrage P, et al. Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays. PLoS One. 2011;6(1): e15844. https://doi.org/10.1371/journal.pone.0015844.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    73. Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL. Cell lineages and the logic of proliferative control. PLoS Biol. 2009;7(1): e1000015. https://doi.org/10.1371/journal.pbio.1000015.

      Article  CAS  PubMed Central  Google Scholar 

    74. Rodriguez-Brenes IA, Komarova NL, Wodarz D. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc Natl Acad Sci U S A. 2011;108(47):18983–8. https://doi.org/10.1073/pnas.1107621108.

      Article  PubMed  PubMed Central  Google Scholar 

    75. • Weiss LD, van den Driessche P, Lowengrub JS, Wodarz D, Komarova NL. Effect of feedback regulation on stem cell fractions in tissues and tumors: Understanding chemoresistance in cancer. J Theor Biol. 2021;509:110499. https://doi.org/10.1016/j.jtbi.2020.110499. This article examines the impacts of feedback loops on the self-renewal, division, and death rates.

    76. Lord BI, Gurney H, Chang J, Thatcher N, Crowther D, Dexter TM. Haemopoietic cell kinetics in humans treated with rGM-CSF. Int J Cancer. 1992;50(1):26–31. https://doi.org/10.1002/ijc.2910500107.

      Article  CAS  PubMed  Google Scholar 

    77. Afenya E, Mundle S. Hematologic disorders and bone marrow–peripheral blood dynamics. Math Model Nat Phenom. 2010;5(3):15–27.

      Article  Google Scholar 

    78. • Benítez L, Barberis L, Condat CA. Modeling tumorspheres reveals cancer stem cell niche building and plasticity. Phys A Stat Mech Appl. 2019;533:121906. https://doi.org/10.1016/j.physa.2019.121906. This article examines the delicate balance between differentiated and cancer stem cells based on the probability of symmetric cell division.

    79. Kaveh K, Kohandel M, Sivaloganathan S. Replicator dynamics of cancer stem cell: selection in the presence of differentiation and plasticity. Math Biosci. 2016;272:64–75. https://doi.org/10.1016/j.mbs.2015.11.012.

      Article  PubMed  Google Scholar 

    80. Konstorum A, Hillen T, Lowengrub J. Feedback regulation in a cancer stem cell model can cause an allee effect. Bull Math Biol. 2016;78(4):754–85. https://doi.org/10.1007/s11538-016-0161-5.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    81. Mahdipour-Shirayeh A, Kaveh K, Kohandel M, Sivaloganathan S. Phenotypic heterogeneity in modeling cancer evolution. PLoS One. 2017;12(10): e0187000. https://doi.org/10.1371/journal.pone.0187000.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    82. Wodarz D. Effect of cellular de-differentiation on the dynamics and evolution of tissue and tumor cells in mathematical models with feedback regulation. J Theor Biol. 2018;448:86–93. https://doi.org/10.1016/j.jtbi.2018.03.036.

      Article  PubMed  PubMed Central  Google Scholar 

    83. Eastman B, Wodarz D, Kohandel M. The effects of phenotypic plasticity on the fixation probability of mutant cancer stem cells. J Theor Biol. 2020;503: 110384. https://doi.org/10.1016/j.jtbi.2020.110384.

      Article  CAS  PubMed  Google Scholar 

    84. Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in oncology—a promise for a better therapeutic outcome: state of the art and future perspectives. J Med Chem. 2020;63(24):15279–307. https://doi.org/10.1021/acs.jmedchem.0c01336.

      Article  CAS  PubMed  Google Scholar 

    85. Lin M, Chang AE, Wicha M, Li Q, Huang S. Development and application of cancer stem cell-targeted vaccine in cancer immunotherapy. J Vaccines Vaccin. 2017;8(6):371. https://doi.org/10.4172/2157-7560.1000371.

      Article  PubMed  PubMed Central  Google Scholar 

    86. • Brady R, Enderling H. Mathematical models of cancer: when to predict novel therapies, and when not to. Bull Math Biol. 2019;81(10):3722–31. https://doi.org/10.1007/s11538-019-00640-x. This article cautions about exploiting data in model development and stresses the importance of math and science collaboration.

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Ellen R. Swanson.

    Ethics declarations

    Conflict of Interest

    The authors declare no relevant conflicts of interest.

    Human and Animal Rights and Informed Consent

    This article does not contain any studies with human or animal subjects performed by any of the authors.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Mathematical Models of Stem Cell Behaviour

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Swanson, E.R., Elliott, S.L., Zollinger, E.A. et al. Cancer Stem Cell Division: Mathematical Models and Insights. Curr Stem Cell Rep 7, 204–211 (2021). https://doi.org/10.1007/s40778-021-00199-1

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s40778-021-00199-1

    Keywords

    Navigation