Skip to main content

Advertisement

Log in

A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders

  • Pre-clinical and Clinical Cellular Therapies (H.T. Spencer, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Paediatric neurological disorders (PNDs) are neurological conditions in infants resulting from injury to the developing nervous system. The neurodevelopmental sequelae in infants with neurological disorders occur from injury to a substantial part of the nervous system. The type of PNDs is classified based on the manifestations, signs and symptoms, and the neurologic core affected by the injury. However, the current prevalence of PNDs underlines the need for optimized and new treatment options.

Recent Findings

PNDs include, but are not limited to, neonatal stroke, cerebral palsy (CP), autism, paediatric status epilepticus (PSE) and spinal cord injury (SCI). Understanding the mechanisms underpinning neuronal necrosis in PNDs has led to the design and trial of potential therapies, including antioxidants, anticonvulsant drugs, mesenchymal stem cells (MSCs), hypothermia and erythropoietin (EPO). With those therapies and other treatment options for PNDs, a significant milestone in the care for children with PNDs has been achieved.

Summary

This review highlights the need for future pre-clinical and clinical studies to investigate a combination therapy of EPO and MSCs for PNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, et al. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013;44(3):753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spadafora R, Gonzalez FF, Derugin N, Wendland M, Ferriero D, McQuillen P. Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev Neurosci. 2010;32(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci. 2009;31(5):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cameron SH, Alwakeel AJ, Goddard L, Hobbs CE, Gowing EK, Barnett ER, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci. 2015;68:56–72.

    Article  CAS  PubMed  Google Scholar 

  5. • Fang AY, Gonzalez FF, Sheldon RA, Ferriero DM. Effects of combination therapy using hypothermia and erythropoietin in a rat model of neonatal hypoxia-ischemia. Pediatr Res. 2013;73(1):12–7 This study examines the combination of hypothermia and treatment with erythropoietin in neonatal rat hypoxic-ischaemic. The study found that there was no significant benefit from treatment with either hypothermia or combination therapy.

  6. Higgins RD, Raju T, Edwards AD, Azzopardi DV, Bose CL, Clark RH, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr. 2011;159(5):851–8 e1.

  7. • Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent hypoxia-ischemia models for cerebral palsy research: a systematic review. Front Neurol. 2016;7:57 This systematic review compares and discusses the advantages, limitation and the translation value for cerebral palsy research for hypoxia/ischemia models of perinatal brain injury.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gancia P, Pomero G. Therapeutic hypothermia in the prevention of hypoxic-ischaemic encephalopathy: new categories to be enrolled. Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(sup4):94–6.

    Article  Google Scholar 

  9. Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech. 2010;3(11-12):678–88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Larpthaveesarp A, Georgevits M, Ferriero DM, Gonzalez FF. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis. 2016;93:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • van Velthoven CT, Braccioli L, Willemen HL, Kavelaars A, Heijnen CJ. Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage. Mol Ther. 2014;22(3):645–54 This study showed that mesenchymal stem cells, modified to secrete specific growth factors is a useful approach for treatment of neonatal HI brain damage. However, necessary care must be taken when selecting the factor to overexpress in the neonatal brain.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41(Suppl 1):94–114.

    PubMed  Google Scholar 

  14. Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007;61(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  15. Gunn AJ, Gunn TR, Gunning MI, Williams CE, Gluckman PD. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics. 1998;102(5):1098–106.

    Article  CAS  PubMed  Google Scholar 

  16. Elitt CM, Rosenberg PA. The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience. 2014;276:216–38.

    Article  CAS  PubMed  Google Scholar 

  17. Panigrahy A, Wisnowski JL, Furtado A, Lepore N, Paquette L, Bluml S. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr Radiol. 2012;42(Suppl 1(1)):S33–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kalita J, Kumar V, Misra UK, Bora HK. Memory and learning dysfunction following copper toxicity: biochemical and immunohistochemical basis. Mol Neurobiol. 2018;55(5):3800–11.

    CAS  PubMed  Google Scholar 

  19. Rumbeiha W, Whitley E, Anantharam P, Kim DS, Kanthasamy A. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann N Y Acad Sci. 2016;1378(1):5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donega V, van Velthoven CT, Nijboer CH, Kavelaars A, Heijnen CJ. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab. 2013;33(5):625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, et al. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci. 2014;34(1):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felling RJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN, Yang Z, et al. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci. 2006;26(16):4359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol. 2003;13(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  24. Nakano N, Nakai Y, Seo TB, Yamada Y, Ohno T, Yamanaka A, et al. Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett. 2010;483(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  25. Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, et al. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology. 2007;27(4):355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun. 2011;25(7):1342–8.

    Article  PubMed  Google Scholar 

  27. Petro M, Jaffer H, Yang J, Kabu S, Morris VB, Labhasetwar V. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials. 2016;81:169–80.

    Article  CAS  PubMed  Google Scholar 

  28. • Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res. 2017;320:291–30 This study study shows that human umbilical cord mesenchymal stem cells can improve cognition of Alzheimer’s disease (AD) mice by decreasing oxidative stress and promoting hippocampal neurogenesis. This comprehensive study also suggest that modulating human umbilical cord mesenchymal stem cells to generate excess neuroprotective factors could provide a viable therapy to treat AD.

    Article  CAS  PubMed  Google Scholar 

  29. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun. 2010;24(3):387–93.

    Article  PubMed  Google Scholar 

  30. Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev. 2012;26(10):1010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC. The aging neurogenic subventricular zone. Aging Cell. 2006;5(2):139–52.

    Article  CAS  PubMed  Google Scholar 

  32. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11(1):173–89.

    Article  CAS  PubMed  Google Scholar 

  33. Kazanis I. The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain. 2009;132(11):2909–21.

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development. 2001;128(19):3759–71.

    Article  CAS  PubMed  Google Scholar 

  36. Ohtani N, Goto T, Waeber C, Bhide PG. Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci. 2003;23(7):2840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Capilla-Gonzalez V, Lavell E, Quiñones-Hinojosa A, Guerrero-Cazares H. Regulation of subventricular zone-derived cells migration in the adult brain. In: Stem Cell Biology in Neoplasms of the Central Nervous System. Berlin: Springer; 2015. p. 1–21.

  38. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010;28(3):545–54.

    Article  PubMed  Google Scholar 

  39. Otero L, Zurita M, Bonilla C, Rico MA, Aguayo C, Rodriguez A, et al. Endogenous neurogenesis after intracerebral hemorrhage. Histol Histopathol. 2012;27(3):303–15.

    CAS  PubMed  Google Scholar 

  40. Lesny I. History of paediatric neurology: a brief review. J Hist Neurosci. 1995;4(1):25–6.

    Article  CAS  PubMed  Google Scholar 

  41. Chaitanya K, Addanki A, Karambelkar R, Ranjan R. Traumatic brain injury in Indian children. Childs Nerv Syst. 2018;34(6):1119–23.

    Article  PubMed  Google Scholar 

  42. Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal microcephaly: Wiley Online Library; 2014.

  43. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods. 1991;36(2-3):219–28.

    Article  CAS  PubMed  Google Scholar 

  44. Boulland JL, Lambert FM, Zuchner M, Strom S, Glover JC. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One. 2013;8(8):e71701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, et al. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology. 2017;113(Pt A):71–81.

    Article  CAS  PubMed  Google Scholar 

  46. Perets N, Segal-Gavish H, Gothelf Y, Barzilay R, Barhum Y, Abramov N, et al. Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behav Brain Res. 2017;331:254–60.

    Article  CAS  PubMed  Google Scholar 

  47. Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, et al. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci. 2017;173:43–54.

    Article  CAS  PubMed  Google Scholar 

  48. Nitkin CR, Bonfield TL. Concise review: mesenchymal stem cell therapy for pediatric disease: perspectives on success and potential improvements. Stem Cells Transl Med. 2017;6(2):539–65.

    Article  PubMed  Google Scholar 

  49. Can A. A concise review on the classification and nomenclature of stem cells. Turk J Haematol. 2008;25(2):57–9.

    PubMed  Google Scholar 

  50. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakanishi C, Nagaya N, Ohnishi S, Yamahara K, Takabatake S, Konno T, et al. Gene and protein expression analysis of mesenchymal stem cells derived from rat adipose tissue and bone marrow. Circ J. 2011;75(9):2260–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ha S, Park H, Mahmood U, Ra JC, Suh YH, Chang KA. Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model. Behav Brain Res. 2017;317:479–84.

    Article  CAS  PubMed  Google Scholar 

  53. Patel SA, Sherman L, Munoz J, Rameshwar P. Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz). 2008;56(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  54. Segers S, Mertes H, de Wert G, Dondorp W, Pennings G. Balancing ethical pros and cons of stem cell derived gametes. Ann Biomed Eng. 2017;45(7):1620–32.

    Article  PubMed  Google Scholar 

  55. Burns E. More than clinical waste? Placenta rituals among Australian home-birthing women. J Perinat Educ. 2014;23(1):41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kugler J, Huhse B, Tralau T, Luch A. Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol. 2017;13(8):833–41.

    Article  CAS  PubMed  Google Scholar 

  57. Harris DT. Banking of adipose-and cord tissue-derived stem cells: technical and regulatory issues. In: Biobanking and Cryopreservation of Stem Cells: Springer; 2016. p. 147–54.

  58. Zhang X, Zhang Q, Li W, Nie D, Chen W, Xu C, et al. Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy. J Neurosci Res. 2014;92(1):35–45.

    Article  PubMed  Google Scholar 

  59. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  60. Chicha L, Smith T, Guzman R. Stem cells for brain repair in neonatal hypoxia-ischemia. Childs Nerv Syst. 2014;30(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  61. Greenfield JP, Ayuso-Sacido A, Schwartz TH, Pannullo S, Souweidane M, Stieg PE, et al. Use of human neural tissue for the generation of progenitors. Neurosurgery. 2008;62(1):21–7.

    Article  PubMed  Google Scholar 

  62. Zhu LH, Bai X, Zhang N, Wang SY, Li W, Jiang L. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res. 2014;1563:13–21.

    Article  CAS  PubMed  Google Scholar 

  63. Ong J, Plane JM, Parent JM, Silverstein FS. Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res. 2005;58(3):600–6.

    Article  PubMed  Google Scholar 

  64. Sola A, Peng H, Rogido M, Wen TC. Animal models of neonatal stroke and response to erythropoietin and cardiotrophin-1. Int J Dev Neurosci. 2008;26(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  65. Sola A, Rogido M, Lee BH, Genetta T, Wen TC. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res. 2005;57(4):481–7.

    Article  CAS  PubMed  Google Scholar 

  66. Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci. 2014;10(8):921–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med. 2013;3(3):a011619.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci. 2007;29(4-5):321–30.

    Article  CAS  PubMed  Google Scholar 

  69. Singhi S, Johnston M. Recent advances in perinatal neuroprotection. F1000Res. 2019;8.

  70. Arnaez J, Miranda M, Rinones E, Garcia-Alix A. Whole-body cooling and erythropoietin in neonatal cervical spine injury. Ther Hypothermia Temp Manag. 2019;9(2):159–62.

    Article  PubMed  Google Scholar 

  71. Lee AYW, Ng SY. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu M, Wang AJ, Zhao G, He H, Williams Z, Hu K. Efficacy and safety of erythropoietin for traumatic brain injury: a meta-analysis of randomized controlled trials. medRxiv. 2019:19006601.

  73. Dong H, Li G, Shang C, Yin H, Luo Y, Meng H, et al. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy. Am J Transl Res. 2018;10(3):901–6.

    PubMed  PubMed Central  Google Scholar 

  74. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27(2):325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–91.

    Article  CAS  PubMed  Google Scholar 

  76. Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12(1):1–8.

    Article  CAS  Google Scholar 

  77. Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–91.

    Article  PubMed  Google Scholar 

  78. Hur JW, Cho T-H, Park D-H, Lee J-B, Park J-Y, Chung Y-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. The Journal of Spinal Cord Medicine. 2016;39(6):655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jeon SR, Park JH, Lee JH, Kim DY, Kim HS, Sung IY, et al. Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regen Med. 2010;7(3):316–22.

    Google Scholar 

  80. Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20(6):806–19.

    Article  PubMed  Google Scholar 

  81. Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, et al. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int. 2013;2013.

  82. Lv Y-T, Zhang Y, Liu M, Ashwood P, Cho SC, Huan Y, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013;11(1):1–10.

    Article  Google Scholar 

  83. da Silva KOG, da Conceição PS, Portovedo M, Milanski M, Galindo LCM, Guzmán-Quevedo O, et al. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy. Int J Dev Neurosci. 2016;52:38–45.

    Article  CAS  PubMed  Google Scholar 

  84. Perlman JM. Intrapartum hypoxic-ischemic cerebral injury and subsequent cerebral palsy: medicolegal issues. Pediatrics. 1997;99(6):851–9.

    Article  CAS  PubMed  Google Scholar 

  85. Fong HD. Trends in cerebral palsy research: Nova Publishers; 2005.

  86. Society. C.P. Cerebral Palsy Society of New Zealand 2020 Available from: https://www.cpsoc.org.nz.

  87. Berry MJ, Jaquiery AL, Oliver MH, Harding JE, Bloomfield FH. Neonatal milk supplementation in lambs has persistent effects on growth and metabolic function that differ by sex and gestational age. Br J Nutr. 2016;116(11):1912–25.

    Article  CAS  PubMed  Google Scholar 

  88. Jia Y, Shi X, Xie Y, Xie X, Wang Y, Li S. Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial. Stem Cell Res Ther. 2017;8(1):1–9.

    Article  Google Scholar 

  89. Wang Z, Luo Y, Chen L, Liang W. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Experimental and therapeutic medicine. 2017;13(6):3613–8.

    PubMed  PubMed Central  Google Scholar 

  90. Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lu K, Li H-Y, Yang K, Wu J-L, Cai X-W, Zhou Y, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2017;8(1):1–11.

    Article  Google Scholar 

  92. Wang X, Cheng H, Hua R, Yang J, Dai G, Zhang Z, et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15(12):1549–62.

    Article  PubMed  Google Scholar 

  93. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5(6):485–9.

    Article  PubMed  Google Scholar 

  94. van der Kooij MA, Groenendaal F, Kavelaars A, Heijnen CJ, van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev. 2008;59(1):22–33.

    Article  PubMed  Google Scholar 

  95. Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol. 2001;60(4):386–92.

    Article  CAS  PubMed  Google Scholar 

  96. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38(10):2795–803.

    Article  CAS  PubMed  Google Scholar 

  97. O’Gorman RL, Bucher HU, Held U, Koller BM, Hüppi PS, Hagmann CF, et al. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain. 2015;138(2):388–97.

    Article  PubMed  Google Scholar 

  98. Leuchter RH-V, Gui L, Poncet A, Hagmann C, Lodygensky GA, Martin E, et al. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. Jama. 2014;312(8):817–24.

    Article  PubMed  Google Scholar 

  99. Rutherford MA, Ramenghi LA, Cowan FM. Neonatal stroke. Arch Dis Child Fetal Neonatal Ed. 2012;97(5):F377–84.

    Article  CAS  PubMed  Google Scholar 

  100. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr. 2001;13(6):506–16.

    Article  CAS  PubMed  Google Scholar 

  101. Harbert MJ, Tam EWY, Glass HC, Bonifacio SL, Haeusslein LA, Barkovich AJ, et al. Hypothermia is correlated with seizure absence in perinatal stroke. J Child Neurol. 2011;26(9):1126–30.

    Article  PubMed  PubMed Central  Google Scholar 

  102. van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res. 2012;71(4 Pt 2):474–81.

    Article  PubMed  Google Scholar 

  103. Shingo T, Sorokan ST, Shimazaki T, Weiss S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci. 2001;21(24):9733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732–7.

    Article  CAS  PubMed  Google Scholar 

  105. Piatt J, Imperato N. Epidemiology of spinal injury in childhood and adolescence in the United States: 1997-2012. J Neurosurg Pediatr. 2018;21(5):441–8.

    Article  PubMed  Google Scholar 

  106. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7(8):628–43.

    Article  CAS  PubMed  Google Scholar 

  107. Basu S. Spinal injuries in children. Front Neurol. 2012;3:96.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Batchelor PE, Skeers P, Antonic A, Wills TE, Howells DW, Macleod MR, et al. Systematic review and meta-analysis of therapeutic hypothermia in animal models of spinal cord injury. PLoS One. 2013;8(8):e71317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, et al. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. 2017;26(4):585–603.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nori S, Ahuja CS, Fehlings MG. Translational advances in the management of acute spinal cord injury: what is new? What is hot? Neurosurgery. 2017;64(CN_suppl_1):119–28.

    Article  PubMed  Google Scholar 

  111. Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 2017;26(5):891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kemp K, Mallam E, Hares K, Witherick J, Scolding N, Wilkins A. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PLoS One. 2011;6(10):e26098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. da Costa Gonçalves F, Grings M, Nunes NS, Pinto FO, Garcez TNA, Visioli F, et al. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett. 2017;39(4):613–22.

    Article  PubMed  Google Scholar 

  114. Genc S, Koroglu TF, Genc K. Erythropoietin and the nervous system. Brain Res. 2004;1000(1-2):19–31.

    Article  CAS  PubMed  Google Scholar 

  115. Castillo-Meléndez M, Yan E, Walker DW. Expression of erythropoietin and its receptor in the brain of late-gestation fetal sheep, and responses to asphyxia caused by umbilical cord occlusion. Dev Neurosci. 2005;27(2-4):220–7.

    Article  PubMed  Google Scholar 

  116. Erbayraktar S, Grasso G, Sfacteria A, Xie Q-W, Coleman T, Kreilgaard M, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity <em>in vivo</em&gt. Proceedings of the National Academy of Sciences. 2003;100(11):6741.

    Article  CAS  Google Scholar 

  117. Celik M, Gökmen N, Erbayraktar S, Akhisaroglu M, Konakç S, Ulukus C, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci. 2002;99(4):2258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kumral A, Ozer E, Yilmaz O, Akhisaroglu M, Gokmen N, Duman N, et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Neonatology. 2003;83(3):224–8.

    Article  CAS  Google Scholar 

  119. Campana WM, Misasi R, O’Brien JS. Identification of a neurotrophic sequence in erythropoietin. Int J Mol Med. 1998;1(1):235–76.

    CAS  PubMed  Google Scholar 

  120. Abend NS, Loddenkemper T. Pediatric status epilepticus management. Curr Opin Pediatr. 2014;26(6):668.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Alford EL, Wheless JW, Phelps SJ. Treatment of generalized convulsive status epilepticus in pediatric patients. J Pediatr Pharmacol Ther. 2015;20(4):260–89.

    PubMed  PubMed Central  Google Scholar 

  122. Smith DM, McGinnis EL, Walleigh DJ, Abend NS. Management of status epilepticus in children. J Clin Med. 2016;5(4):47.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Karussis D, Kassis I, Kurkalli BGS, Slavin S. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci. 2008;265(1-2):131–5.

    Article  CAS  PubMed  Google Scholar 

  124. Agadi S, Shetty AK. Concise review: prospects of bone marrow mononuclear cells and mesenchymal stem cells for treating status epilepticus and chronic epilepsy. Stem Cells. 2015;33(7):2093–103.

    Article  CAS  PubMed  Google Scholar 

  125. Abdanipour A, Tiraihi T, Mirnajafi-Zadeh J. Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res. 2011;33(6):625–32.

    Article  PubMed  Google Scholar 

  126. Voulgari-Kokota A, Fairless R, Karamita M, Kyrargyri V, Tseveleki V, Evangelidou M, et al. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol. 2012;236(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  127. Li T, Ren G, Kaplan DL, Boison D. Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res. 2009;84(2-3):238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shetty AK, Hattiangady B, Shetty G. Intraperitoneal administration of human mesenchymal stem cells restrains status epilepticus induced neurodegeneration and inflammatory reaction in the hippocampus 2014.

  129. Chu K, Jung K-H, Lee S-T, Kim J-H, Kang K-M, Kim H-K, et al. Erythropoietin reduces epileptogenic processes following status epilepticus. Epilepsia. 2008;49(10):1723–32.

    Article  CAS  PubMed  Google Scholar 

  130. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 1996;76(1):105–16.

    Article  Google Scholar 

  131. Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, et al. Erythropoietin can induce the expression of bcl-xlthrough stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem. 1999;274(32):22165–9.

    Article  CAS  PubMed  Google Scholar 

  132. Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14(3):494–503.

    Article  CAS  PubMed  Google Scholar 

  133. Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: comparison with neuronal degeneration and microglial activation. Neuroscience. 2003;122(2):329–48.

    Article  CAS  PubMed  Google Scholar 

  134. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299(Pt A):217–27.

    Article  CAS  PubMed  Google Scholar 

  135. Giuliani M, Fleury M, Vernochet A, Ketroussi F, Clay D, Azzarone B, et al. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PLoS One. 2011;6(5):e19988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2-3):183–7.

    Article  PubMed  Google Scholar 

  137. Hell RCR, Costa MMS, Goes AM, Oliveira ALR. Local injection of BDNF producing mesenchymal stem cells increases neuronal survival and synaptic stability following ventral root avulsion. Neurobiol Dis. 2009;33(2):290–300.

    Article  Google Scholar 

  138. Chang Y-K, Chen M-H, Chiang Y-H, Chen Y-F, Ma W-H, Tseng C-Y, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18(1):1–9.

    Article  Google Scholar 

  139. Siniscalco D, Sapone A, Cirillo A, Giordano C, Maione S, Antonucci N. Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? J Biomed Biotechnol. 2012;2012.

  140. Juul SE, Mayock DE, Comstock BA, Heagerty PJ. Neuroprotective potential of erythropoietin in neonates: design of a randomized trial. Maternal health, neonatology and perinatology. 2015;1(1):1–9.

    Article  Google Scholar 

  141. Demers EJ, McPherson RJ, Juul SE. Erythropoietin protects dopaminergic neurons and improves neurobehavioral outcomes in juvenile rats after neonatal hypoxia-ischemia. Pediatr Res. 2005;58(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  142. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci. 2002;99(14):9450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke. 2005;36(8):1672–8.

    Article  CAS  PubMed  Google Scholar 

  144. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003;198(6):971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, et al. Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity. Neurobiol Dis. 2004;15(2):177–87.

    Article  CAS  PubMed  Google Scholar 

  146. Solmaz V, Erdoğan MA, Alnak A, Meral A, Erbaş O. Erythropoietin shows gender dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide induced rat model of autism. Neuropeptides. 2020;83:102073.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jithendra Tharanga Ratnayake.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies and experiments involving human or animal subjects performed by the authors have been previously published and complied with applicable ethical standards as defined in the Helsinki declaration and its amendments, institutional and national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pre-clinical and Clinical Cellular Therapies

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghoghovwia, B.E., Okpe, O., McIntyre, E.A. et al. A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. Curr Stem Cell Rep 7, 95–107 (2021). https://doi.org/10.1007/s40778-021-00189-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-021-00189-3

Keywords

Navigation