Skip to main content
Log in

Engineered Biomimetic Neural Stem Cell Niche

  • Stem Cell Switches and Regulators (K Hirschi, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neural stem cells (NSCs) have the potential to proliferate and differentiate into functional neurons, heightening their potential use for therapeutic applications. This review explores bioengineered systems which recapitulate NSC niche cell-cell and cell-matrix interactions.

Recent Findings

Delivery of NSCs to the cytotoxic injured brain is limited by low cell survival rates post-transplantation and poor maintenance of native niche bioactive components. The use of biomaterial platforms can mimic in vivo the environment of the two germinal areas of the adult brain in which NSCs thrive. An environmental mimic that includes extracellular proteins and moieties, along with appropriate biomechanical cues has recently demonstrated promising results in enhancing neurogenesis, aiding the production of a bioengineered niche.

Summary

Biocomposition, biomechanics, and biostructure can be manipulated through engineered platforms to re-create the biofunctionality of an NSC niche. Upon transplantation and delivery with biomimetic scaffolds, NSCs show potential to promote functional recovery and rebuild neural circuitry post neurological trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.

    Article  CAS  PubMed  Google Scholar 

  2. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, DeLeo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82(3):545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matta R, Gonzalez AL. Stroke repair via biomimicry of the subventricular zone. Front Mater. 2018;5(15).

  4. Bond AM, Ming G-L, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun GJ, Zhou Y, Stadel RP, Moss J, Yong JHA, Ito S, et al. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci. 2015;112(30):9484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delgado AC, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron. 2014;83(3):572–85.

    Article  CAS  PubMed  Google Scholar 

  7. Stolp, H.B. and Z. Molnár, Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci, 2015. 9(20).

  8. • Trost A, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10(20) This article highlights pericytes in the neurovascular unit and their role in blood-brain barrier stability, focusing on their role in de- and regenerative processes.

  9. Lacar B, Herman P, Platel JC, Kubera C, Hyder F, Bordey A. Neural progenitor cells regulate capillary blood flow in the postnatal subventricular zone. J Neurosci. 2012;32(46):16435–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis. 2015;74:229–39.

    Article  PubMed  Google Scholar 

  11. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 2014;16(11):1045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashton RS, Conway A, Pangarkar C, Bergen J, Lim KI, Shah P, et al. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci. 2012;15:1399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci. 2016;73(24):4661–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wade A, McKinney A, Phillips JJ. Matrix regulators in neural stem cell functions. Biochim Biophys Acta Gen Subj. 2014;1840(8):2520–5.

    Article  CAS  Google Scholar 

  15. Faissner A, Roll L, Theocharidis U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci. 2017;81:22–31.

    Article  CAS  PubMed  Google Scholar 

  16. May M, et al. Cell tracking in vitro reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord. Biol Open. 2018;7(7).

  17. Betancur MI, Mason HD, Alvarado-Velez M, Holmes PV, Bellamkonda RV, Karumbaiah L. Chondroitin sulfate glycosaminoglycan matrices promote neural stem cell maintenance and neuroprotection post-traumatic brain injury. ACS Biomater Sci Eng. 2017;3(3):420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active notch signaling to control neurogenesis in vertebrates. Development. 2014;141(8):1671–82.

    Article  CAS  PubMed  Google Scholar 

  19. •• Regalado-Santiago C, et al. Mimicking neural stem cell niche by biocompatible substrates. Stem Cells Int. 2016;2016:1513285 This review examines NSCs in the neurogenic niche and their interactions with biocompatible substrates which mimic the in vivo microenvironmnet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells. 2017;35(2):497–506.

    Article  CAS  PubMed  Google Scholar 

  21. Ma Q, Yang L, Jiang Z, Song Q, Xiao M, Zhang D, et al. Three-dimensional stiff graphene scaffold on neural stem cells behavior. ACS Appl Mater Interfaces. 2016;8(50):34227–33.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Liang H, Sun J, Zhuang Y, Xu B, Dai J. Electrospun collagen fibers with spatial patterning of SDF1α for the guidance of neural stem cells. Adv Healthcare Mater. 2015;4(12):1869–76.

    Article  CAS  Google Scholar 

  23. Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 2016;43:122–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng A. 2014;20(1–2):313–23.

    Article  CAS  Google Scholar 

  25. •• Ghuman H, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63 This article provides support for the use of natural biomaterials that can reduce further progression of a stroke cavity long-term and be utilied to deliver drugs or cells to the damaged area.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin Y, Yang K, Han S, Park HJ, Seok Heo Y, Cho SW, et al. Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix. Adv Healthcare Mater. 2014;3(9):1457–64.

    Article  CAS  Google Scholar 

  27. Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater. 2013;9(2):5170–80.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas RC, Vu P, Modi SP, Chung PE, Landis RC, Khaing ZZ, et al. Sacrificial crystal templated hyaluronic acid hydrogels as biomimetic 3D tissue scaffolds for nerve tissue regeneration. ACS Biomater Sci Eng. 2017;3(7):1451–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10(21):17742–55.

    Article  CAS  PubMed  Google Scholar 

  30. Pietrucha K, Zychowicz M, Podobinska M, Buzanska L. Functional properties of different collagen scaffolds to create a biomimetic niche for neurally committed human induced pluripotent stem cells (iPSC). Folia Neuropathol. 2017;55(2):110–23.

    Article  PubMed  Google Scholar 

  31. • Jenkins SI, et al. ‘Stealth’ nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. J Control Release. 2016;224:136–45 This article discusses a well defined synthetic particle that can evade neural immune cells and major brain cell populations post transplantation, promoting the use of synthetic biomaterials for neurotherapeutic application.

    Article  CAS  PubMed  Google Scholar 

  32. Vaysse L, Beduer A, Sol JC, Vieu C, Loubinoux I. Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult. Biomaterials. 2015;58:46–53.

    Article  CAS  PubMed  Google Scholar 

  33. •• Davoust C, et al. Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery. Stem Cell Res Ther. 2017;8(1):253 This article evaluates improvement in recovery post transplantation of NSCs in combination with implants. Evaluation with MRI and immunohistology provide insights into regenerative potential of cell-based biomaterial delivery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsieh F-Y, Lin H-H, Hsu S-h. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.

    Article  CAS  PubMed  Google Scholar 

  35. Cherry JF, Bennett NK, Schachner M, Moghe PV. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomater. 2014;10(10):4113–26.

    Article  CAS  PubMed  Google Scholar 

  36. Yun D, Lee YM, Laughter MR, Freed CR, Park D. Substantial differentiation of human neural stem cells into motor neurons on a biomimetic Polyurea. Macromol Biosci. 2015;15(9):1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee I-C, Wu YC, Cheng EM, Yang WT. Biomimetic niche for neural stem cell differentiation using poly-L-lysine/hyaluronic acid multilayer films. J Biomater Appl. 2015;29(10):1418–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from our laboratories was supported by NIH (R01EB016629-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjelica L. Gonzalez.

Ethics declarations

Conflict of Interest

Rita Matta and Anjelica Gonzalez each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matta, R., Gonzalez, A.L. Engineered Biomimetic Neural Stem Cell Niche. Curr Stem Cell Rep 5, 109–114 (2019). https://doi.org/10.1007/s40778-019-00161-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-019-00161-2

Keywords

Navigation