How to Characterize Stem Cells? Contributions from Mathematical Modeling

Abstract

Purpose of Review

Adult stem cells play a key role in tissue regeneration and cancer. To translate findings from stem cell biology into clinics, we require a quantitative characterization of stem cell dynamics in vivo. This review explores how mathematical models can help to characterize stem cell behavior in health and disease.

Recent Findings

Mathematical models significantly contribute to quantification of stem cell traits such as proliferation, self-renewal, and quiescence. They provide insights into the role of systemic and micro-environmental feedback loops during regeneration and cancer. Computer simulations allow linking stem cell properties to tumor composition, clinical course, and drug response. Therefore, models are helpful in personalizing treatments and predicting patient survival.

Summary

Mathematical models coupled with tools of parameter estimation and model selection provide quantitative insights into stem cell properties and their regulation. They help to understand experimentally inaccessible processes occurring in regeneration, aging, and cancer.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Slack JMW. What is a stem cell? Wiley Interdiscip Rev Dev Biol. 2018;15:e323.

    Article  Google Scholar 

  2. 2.

    Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, et al. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev. 2013;22(16):2221–39.

    CAS  Article  Google Scholar 

  3. 3.

    Hawley RG, Ramezani A, Hawley TS. Hematopoietic stem cells. Methods Enzymol. 2006;419:149–79.

    CAS  Article  Google Scholar 

  4. 4.

    Grade S, Götz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med. 2017;2:29.

    Article  Google Scholar 

  5. 5.

    Jiang FX, Morahan G. Pancreatic stem cells remain unresolved. Stem Cells Dev. 2014;23(23):2803–12.

    CAS  Article  Google Scholar 

  6. 6.

    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    CAS  Article  Google Scholar 

  7. 7.

    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    CAS  Article  Google Scholar 

  8. 8.

    Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines. 2018;6(3):E77. https://doi.org/10.3390/biomedicines6030077.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Prostate cancer stem cells: current understanding. Stem Cells. 2018;36:1457–74. https://doi.org/10.1002/stem.2859.

    Article  PubMed  Google Scholar 

  10. 10.

    Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta. 2018;1869(2):346–54.

    CAS  Google Scholar 

  11. 11.

    Skoda J, Veselska R. Cancer stem cells in sarcomas: getting to the stemness core. Biochim Biophys Acta. 2018;1862(10):2134–9.

    CAS  Article  Google Scholar 

  12. 12.

    Marciniak-Czochra A, Stiehl T, Ho AD, Jäger W, Wagner W. Modeling of asymmetric cell division in hematopoietic stem cells - regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 2009;18:377–85.

    CAS  Article  Google Scholar 

  13. 13.

    Stiehl T, Marciniak-Czochra A. Characterization of stem cells using mathematical models of multistage cell lineages. Math Comp Modell. 2011;53:1505–17.

    Article  Google Scholar 

  14. 14.

    Busse JE, Gwiazda P, Marciniak-Czochra A. Mass concentration in a nonlocal model of clonal selection. J Math Biol. 2016;73:1001–33.

    Article  Google Scholar 

  15. 15.

    Doumic M, Marciniak-Czochra A, Perthame B, Zubelli J. Structured population model of stem cell differentiation. SIAM J Appl Math. 2011;71:1918–40.

    Article  Google Scholar 

  16. 16.

    Cho H, Ayers K, de Pills L, Kuo YH, Park J, Radunskaya A, et al. Modelling acute myeloid leukaemia in a continuum of differentiation states. Lett Biomath. 2018;5:S69–98.

    CAS  Article  Google Scholar 

  17. 17.

    •• Ashcroft P, Manz MG, Bonhoeffer S. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments. PLoS Comput Biol. 2017;13(10):e1005803 Develops models of the murine hematopoietic stem cell niche to quantify migration of HSC between bone marrow and blood. Suggests that clonal hematopoiesis in mice has to be linked to a selective advantage of the expanding clone.

    Article  Google Scholar 

  18. 18.

    •• Ziebell F, Dehler S, Martin-Villalba A, Marciniak-Czochra A. Revealing age-related changes of adult hippocampal neurogenesis using mathematical models. Development. 2018;145(1):dev153544. https://doi.org/10.1242/dev.153544 Provides insights into age related changes of neural stem cell proliferation, self-renewal and quiescence.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    • Hamis S, Nithiarasu P, Powathil GG. What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance. J Theor Biol. 2018;454:253–67 Develops a cellular automaton model to study the impact of different resistance mechanisms on treatment outcome.

    CAS  Article  Google Scholar 

  20. 20.

    •• Kather JN, Charoentong P, Suarez-Carmona M, Herpel E, Klupp F, Ulrich A, et al. High-throughput screening of combinatorial immunotherapies with patient-specific in silico models of metastatic colorectal cancer. Cancer Res. 2018. https://doi.org/10.1158/0008-5472.CAN-18-1126 Develops a computational model of solid tumors including cancer cells, fibroblasts and immune cells. Calibration of the model to individual colorectal cancer samples allows to predict patient survival and to simulate treatment schedules.

  21. 21.

    • Stiehl T, Lutz C, Marciniak-Czochra A. Emergence of heterogeneity in acute leukemias. Biol Direct. 2016;11:51 Investigates how cell proliferation and self-renewal change during clonal evolution of AML.

    Article  Google Scholar 

  22. 22.

    •• Nazari F, Pearson AT, Nör JE, Jackson TL. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment. PLoS Comput Biol. 2018;14(1):e1005920 Develops a multiscale model of IL6-mediated cancer cell expansion in head and neck squamous cell cancer and applies it to optimize treatment with antibodies against the IL6 receptor. Suggests that antibodies against the IL6 receptor act stronger on cancer cell death than on cancer cell self-renewal.

    Article  Google Scholar 

  23. 23.

    Gwiazda P, Jamroz G, Marciniak-Czochra A. Models of discrete and continuous cell differentiation in the framework of transport equation. SIAM J Math Anal. 2012;44:1103–33.

    Article  Google Scholar 

  24. 24.

    •• Werner B, Beier F, Hummel S, Balabanov S, Lassay L, Orlikowsky T, et al. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions. Elife. 2015. https://doi.org/10.7554/eLife.08687 Provides insights into age related changes of hematopoietic stem cell self-renewal based on telomere length distributions.

  25. 25.

    •• Stiehl T, Ho AD, Marciniak-Czochra A. Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis. Sci Rep. 2018;8(1):2809. https://doi.org/10.1038/s41598-018-21115-4 Studies how cytokine-dependence of leukemic cells impacts on disease dynamics and suggests that autonomous cell growth is linked to a poor prognosis.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    •• Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 2015;75:940–9 Provides evidence that clinical dynamics of AML depend on leukemic stem cell proliferation and self-renewal. Estimation of these properties from data allow patient specific risk scoring.

    CAS  Article  Google Scholar 

  27. 27.

    •• Kim E, Kim JY, Smith MA, Haura EB. Anderson ARA. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy. PLoS Biol. 2018;16(3):e2002930 Develops a models to study the impact of intercellular signaling heterogeneity on outcome of targeted therapies. The model is used to predict response to kinase inhibitors and model predictions are validated using in vitro data. Possible mechanisms of resistance are investigated.

  28. 28.

    Marciniak-Czochra A, Mikelić A, Stiehl T. Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations. Math Methods Appl Sci. 2018;51(14):5691–710.

    Article  Google Scholar 

  29. 29.

    • Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface. 2014;11:20140079 Develops models of clonal evolution in acute leukemias and provides evidence that high-self-renewal confers a selective advantage.

    Article  Google Scholar 

  30. 30.

    Nikolov S, Santos G, Wolkenhauer O, Vera J. Model-based phenotypic signatures governing the dynamics of the stem and semi-differentiated cell populations in dysplastic colonic crypts. Bull Math Biol. 2018;80(2):360–84.

    CAS  Article  Google Scholar 

  31. 31.

    Stiehl T, Ho AD, Marciniak-Czochra A. Assessing hematopoietic (stem-) cell behavior during regenerative pressure. Adv Exp Med Biol. 2014;844:347–67.

    Article  Google Scholar 

  32. 32.

    •• Wang W, Stiehl T, Raffel S, Hoang VT, Hoffmann I, Poisa-Beiro L, et al. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia. Haematologica. 2017;102(9):1567–77 Develops a model of the human stem cell niche in AML. Provides evidence that competition in the stem cell niche impacts on the clinical course and that a high probability of HSC dislogement by LSC results in low HSC counts at diagnosis and a poor prognosis.

  33. 33.

    • Forouzannia F, Enderling H, Kohandel M. Mathematical modeling of the effects of tumor heterogeneity on the efficiency of radiation treatment schedule. Bull Math Biol. 2018;80(2):283–93 Studies the impact of tumor heterogeneity on the effect of different schemes of radio-therapy. Suggestst that protocols should balance between tumor volume reduction and enrichment of resistant cells.

    Article  Google Scholar 

  34. 34.

    Stiehl T, Marciniak-Czochra A. Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling. Curr Opin Syst Biol. 2017;5:112–20.

    Article  Google Scholar 

  35. 35.

    •• Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518:542–6 Uses labeling techniques to quantitate murine hematopoiesis in homeostasis and stress.

    CAS  Article  Google Scholar 

  36. 36.

    •• Simons BD. Deep sequencing as a probe of normal stem cell fate and preneoplasia in human epidermis. PNAS. 2016;113:128–33 Uses somatic mutations as genetic labels to obtain insight into human stem cell dynamics.

    CAS  Article  Google Scholar 

  37. 37.

    •• Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549:227–32 Provides evidence that clonal dynamics in glioma is mostly based on neutral competition.

    CAS  Article  Google Scholar 

  38. 38.

    Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. PNAS. 2015;112:E6496–505.

    CAS  Article  Google Scholar 

  39. 39.

    Ernst PA, Kimmel M, Kurpas M, Zhou Q. Thick distribution tails in models of cancer secondary tumors. arXiv:1801.00982v1. 2018.

  40. 40.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  Google Scholar 

  41. 41.

    Dufour A, Gontran E, Deroulers C, Varlet P, Pallud J, Grammaticos B, et al. Modeling the dynamics of oligodendrocyte precursor cells and the genesis of gliomas. PLoS Comput Biol. 2018;14(3):e1005977.

    Article  Google Scholar 

  42. 42.

    Stiehl T, Marciniak-Czochra A. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenomena. 2012;7:166–202.

    Article  Google Scholar 

  43. 43.

    Gentry SN, Jackson TL. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms. PLoS One. 2013;8:e71128.

    CAS  Article  Google Scholar 

  44. 44.

    • Stiehl T, Ho AD, Marciniak-Czochra A. The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transplant. 2014;49:30–7. Provides evidence that some patients might profit from higher doses of transplanted cells.

    CAS  Article  Google Scholar 

  45. 45.

    Theocharides A, Rongvaux A, Fritsch K, Flavell R, Manz M. Humanized hemato-lymphoid system mice. Haematologica. 2016;101:5–19.

    CAS  Article  Google Scholar 

  46. 46.

    Matatall KA, Jeong M, Chen S, Sun D, Chen F, Mo Q, et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 2016;17(10):2584–95.

    CAS  Article  Google Scholar 

  47. 47.

    Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, et al. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One. 2017;12(8):e0183620.

    Article  Google Scholar 

  48. 48.

    Walenda T, Stiehl T, Braun H, Fröbel J, Ho AD, Schroeder T, et al. Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput Biol. 2014;10:e1003599.

    Article  Google Scholar 

  49. 49.

    Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, et al. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun. 2015;6:6139.

    CAS  Article  Google Scholar 

  50. 50.

    Zapperi S, La Porta CA. Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers. Sci Rep. 2012;2:441.

    Article  Google Scholar 

  51. 51.

    Zhou D, Mao S, Cheng J, Chen K, Cao X, Hu J. A Bayesian statistical analysis of stochastic phenotypic plasticity model of cancer cells. J Theor Biol. 2018;454:70–9.

    Article  Google Scholar 

  52. 52.

    • Kozłowska E, Färkkilä A, Vallius T, Carpén O, Kemppainen J, Grénman S, et al. Mathematical modeling predicts response to chemotherapy and drug combinations in ovarian cancer. Cancer Res. 2018;78(14):4036–44 Develops a stochastic modeling approach to predict resistance development and outcome of different drug combinations in ovarian cancer.

    Article  Google Scholar 

  53. 53.

    Bayer P, Brown JS, Staňková K. A two-phenotype model of immune evasion by cancer cells. J Theor Biol. 2018;455:191–204.

    CAS  Article  Google Scholar 

  54. 54.

    Mahasa KJ, Ouifki R, Eladdadi A, Pillis L. Mathematical model of tumor-immune surveillance. J Theor Biol. 2016;404:312–30.

    CAS  Article  Google Scholar 

  55. 55.

    Djema W, Bonnet C, Mazenc F, Clairambault J, Fridman E, Hirsch P, et al. Control in dormancy or eradication of cancer stem cells: mathematical modeling and stability issues. J Theor Biol. 2018;449:103–23.

    Article  Google Scholar 

  56. 56.

    • Tonekaboni SAM, Dhawan A, Kohandel M. Mathematical modelling of plasticity and phenotype switching in cancer cell populations. Math Biosci. 2017;283:30–7 Provides evidence that, depending on the context, dedifferentiation of cancer cells can be advanategeous or disadvantageous for survival of the cancer cell population.

    Article  Google Scholar 

  57. 57.

    Medina MÁ. Mathematical modeling of cancer metabolism. Crit Rev Oncol Hematol. 2018;124:37–40.

    Article  Google Scholar 

  58. 58.

    Wooten DJ, Quaranta V. Mathematical models of cell phenotype regulation and reprogramming: make cancer cells sensitive again! Biochim Biophys Acta. 2017;1867(2):167–75.

    CAS  Google Scholar 

  59. 59.

    Wang J. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv Phys. 2015;64(1):1–137.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by research funding from the German Research Foundation DFG (Collaborative Research Center SFB 873, Maintenance and Differentiation of Stem Cells in Development and Disease).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Marciniak-Czochra.

Ethics declarations

Conflict of Interest

Thomas Stiehl and Anna Marciniak-Czochra declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies and experiments involving human or animal subjects performed by the authors have been previously published and complied with applicable ethical standards as defined in the Helsinki declaration and its amendments, institutional and national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mathematical Models of Stem Cell Behavior

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stiehl, T., Marciniak-Czochra, A. How to Characterize Stem Cells? Contributions from Mathematical Modeling. Curr Stem Cell Rep 5, 57–65 (2019). https://doi.org/10.1007/s40778-019-00155-0

Download citation

Keywords

  • Cancer stem cell
  • Mathematical model
  • Tumor heterogeneity
  • Clonal evolution
  • Bone marrow transplantation
  • Patient prognosis
  • Differential equations