Advertisement

Current Stem Cell Reports

, Volume 4, Issue 4, pp 327–337 | Cite as

Mini Review: Application of Human Mesenchymal Stem Cells in Gene and Stem Cells Therapy Era

  • Ruixia Deng
  • Anna Hing Yee Law
  • Jiangang Shen
  • Godfrey Chi-Fung ChanEmail author
Genome Editing (SN Waddington and HC O'Neill, Section Editors)
  • 369 Downloads
Part of the following topical collections:
  1. Topical Collection on Genome Editing

Abstract

Purpose of Review

Mesenchymal stem cells (MSCs) have abilities of self-renewal and multi-lineage differentiation. MSCs can evade immune rejection following allogeneic transplantation setting due to their downregulation of HLA Class II antigen. Therefore, we review the current understanding of using MSCs or MSC-conditioned media as treatment for various diseases.

Recent Findings

(1) MSCs regulate the balance of Th17/Treg cells in autoimmune disease models, which is associated with complex interactions among different pro- or anti-inflammation cytokines. (2) With the nature of MSCs migrating to multiple tissues under various homing signals, we also found MSCs are widely used as cell vehicles for gene or chemokine delivery.

Summary

MSCs or MSC-conditioned media therapies have been explored with advanced techniques. However, it still requires further investigations on (1) how MSCs respond to various microenvironments and (2) how to isolate, purify and expand enough MSCs ex vivo.

Keywords

Mesenchymal stem cells Cell therapy Autoimmune Paracrine Genetic modification Delivery tool 

Notes

Acknowledgments

Many thanks to Dr. Hang Liu, Dr. Amy Bun Tsoi and Dr. Chong Gao for the assistance with the revisions. Works are supported by the donation from Providence Foundation Limited, Hong Kong.

Compliance with Ethical Standards

Conflict of Interest

Ruixia Deng, Anna Hing Yee Law, Jiangang Shen and Godfrey Chi-Fung Chan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMedGoogle Scholar
  2. 2.
    Dominici M, le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Zuo W, Xie B, Li C, Yan Y, Zhang Y, Liu W, Huang J, Chen D. The Clinical Applications of Endometrial Mesenchymal Stem Cells. Biopreserv Biobank. 2018; 16(2):158-164.PubMedGoogle Scholar
  4. 4.
    Farini A, et al. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014;2014:306573.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med. 2013;28(4):387–402.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Choi SA, Yun JW, Joo KM, Lee JY, Kwak PA, Lee YE, et al. Preclinical biosafety evaluation of genetically modified human adipose tissue-derived mesenchymal stem cells for clinical applications to brainstem glioma. Stem Cells Dev. 2016;25(12):897–908.PubMedGoogle Scholar
  7. 7.
    Robles JD, Liu YP, Cao J, Xiang Z, Cai Y, Manio M, et al. Immunosuppressive mechanisms of human bone marrow derived mesenchymal stromal cells in BALB/c host graft versus host disease murine models. Exp Hematol Oncol. 2015;4:13.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tso GH, Law HK, Tu W, Chan GC, Lau YL. Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells. Stem Cells. 2010;28(5):939–54.Google Scholar
  9. 9.
    •• Ni K, Liu M, Zheng J, Wen L, Chen Q, Xiang Z, Lam KT, Liu Y, Chan GC, Lau YL et al. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Am J Respir Cell Mol Biol. 2018;58(6):684-695. (First article to show the benefit of mesenchymal stem cells in treating pulmonary fibrosis model. It also used mice with humanized immune system so the underlying mechanisms can be studied accurately.)PubMedGoogle Scholar
  10. 10.
    Wang D, Huang S, Yuan X, Liang J, Xu R, Yao G, et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol. 2017;14(5):423–31.PubMedGoogle Scholar
  11. 11.
    Chen C, Liang J, Yao G, Chen H, Shi B, Zhang Z, et al. Mesenchymal stem cells upregulate Treg cells via sHLA-G in SLE patients. Int Immunopharmacol. 2017;44:234–41.PubMedGoogle Scholar
  12. 12.
    Chen J, et al. Umbilical cord-derived mesenchymal stem cells suppress autophagy of T cells in patients with systemic lupus erythematosus via transfer of mitochondria. Stem Cells Int. 2016;2016:4062789.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee HK, Kim HS, Kim JS, Kim YG, Park KH, Lee JH, et al. CCL2 deficient mesenchymal stem cells fail to establish long-lasting contact with T cells and no longer ameliorate lupus symptoms. Sci Rep. 2017;7:41258.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen QQ, Yan L, Wang CZ, Wang WH, Shi H, Su BB, et al. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol. 2013;19(29):4702–17.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mao F, Wu Y, Tang X, Wang J, Pan Z, Zhang P, et al. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages. Biotechnol Lett. 2017;39(6):929–38.PubMedGoogle Scholar
  16. 16.
    • de Aguiar CF, Castoldi A, Andrade-Oliveira V, Ignacio A, da Cunha FF, Felizardo RJF, Bassi EJ, Camara NOS, de Almeida DC. Mesenchymal stromal cells modulate gut inflammation in experimental colitis. Inflammopharmacology 2018;26(1):251-260. (This article showed adipose tissue-derived MSCs modulated overall gut inflammation in experimental colitis. This finding proved MSCs from different sources presenting similar immune modulating effects in vivo.)Google Scholar
  17. 17.
    Qiu Y, Guo J, Mao R, Chao K, Chen BL, He Y, et al. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol. 2017;10(3):727–42.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Fuenzalida P, Kurte M, Fernández-O'ryan C, Ibañez C, Gauthier-Abeliuk M, Vega-Letter AM, et al. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium-induced colitis model. Cytotherapy. 2016;18(5):630–41.PubMedGoogle Scholar
  19. 19.
    Mahfouz MM, Abdelsalam RM, Masoud MA, Mansour HA, Ahmed-Farid OA, Kenawy SA. The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J Biochem Mol Toxicol 2017;31(9).Google Scholar
  20. 20.
    Jiang H, Zhang Y, Tian K, Wang B, Han S. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep. 2017;7:41837.PubMedPubMedCentralGoogle Scholar
  21. 21.
    • Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports. 2014;3(1):115–30. (This article showed MSCs induced from human ES presenting protecting effect against neuronal demyelination in EAE mouse model. It showed a novel method to expand the functional MSCs ex vivo.)Google Scholar
  22. 22.
    Anderson P, et al. Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells Int. 2017;2017:2389753.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tafreshi AP, Payne N, Sun G, Sylvain A, Schulze K, Bernard C. Inactive GSK3beta is disturbed in the spinal cord during experimental autoimmune encephalomyelitis, but rescued by stem cell therapy. Neuroscience. 2014;277:498–505.PubMedGoogle Scholar
  24. 24.
    • Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, et al. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy. 2014;10(7):1301–15. (It described the underlying mechanism of MSCs treatment for MS.)PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang D, Li SP, Fu JS, Bai L, Guo L. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis. Int J Dev Neurosci. 2016;49:60–6.PubMedGoogle Scholar
  26. 26.
    Khezri S, Abtahi Froushani SM, Shahmoradi M. Nicotine Augments the Beneficial Effects of Mesenchymal Stem Cell-based Therapy in Rat Model of Multiple Sclerosis. Immunol Invest 2018;47(2):113-124.PubMedGoogle Scholar
  27. 27.
    Xia X, Chiu PWY, Lam PK, Chin WC, Ng EKW, Lau JYW. Secretome from hypoxia-conditioned adipose-derived mesenchymal stem cells promotes the healing of gastric mucosal injury in a rodent model. Biochim Biophys Acta. 2018;1864(1):178–88.Google Scholar
  28. 28.
    Ke F, Zhang L, Liu Z, Yan S, Xu Z, Bai J, et al. Soluble tumor necrosis factor receptor 1 released by skin-derived mesenchymal stem cells is critical for inhibiting Th17 cell differentiation. Stem Cells Transl Med. 2016;5(3):301–13.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lotfinia M, Kadivar M, Piryaei A, Pournasr B, Sardari S, Sodeifi N, et al. Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev. 2016;25(24):1898–908.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25(24):1874–83.PubMedGoogle Scholar
  31. 31.
    Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 2017;34(24):3388–96.PubMedGoogle Scholar
  32. 32.
    Kim TH, Singh RK, Kang MS, Kim JH, Kim HW. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale. 2016;8(15):8300–11.PubMedGoogle Scholar
  33. 33.
    Liu J, Chen W, Zhao Z, Xu HHK. Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement. Acta Biomater. 2014;10(12):5128–38.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sen S, Domingues CC, Rouphael C, Chou C, Kim C, Yadava N. Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Res Ther. 2015;6:242.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Evans GL, Morgan RA. Genetic induction of immune tolerance to human clotting factor VIII in a mouse model for hemophilia A. Proc Natl Acad Sci U S A. 1998;95(10):5734–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Doering CB. Retroviral modification of mesenchymal stem cells for gene therapy of hemophilia. Methods Mol Biol. 2008;433:203–12.PubMedGoogle Scholar
  37. 37.
    Gangadharan B, Parker ET, Ide LM, Spencer HT, Doering CB. High-level expression of porcine factor VIII from genetically modified bone marrow-derived stem cells. Blood. 2006;107(10):3859–64.PubMedGoogle Scholar
  38. 38.
    Zhou YF, Yang XJ, Li HX, Han LH, Jiang WP. Genetically-engineered mesenchymal stem cells transfected with human HCN1 gene to create cardiac pacemaker cells. J Int Med Res. 2013;41(5):1570–6.PubMedGoogle Scholar
  39. 39.
    McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O'Toole D, et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24(10):840–51.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, et al. HIF-1alpha overexpression induces angiogenesis in mesenchymal stem cells. Biores Open Access. 2012;1(4):174–83.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhou YF, Yang XJ, Li HX, Han LH, Jiang WP. Mesenchymal stem cells transfected with HCN2 genes by LentiV can be modified to be cardiac pacemaker cells. Med Hypotheses. 2007;69(5):1093–7.PubMedGoogle Scholar
  42. 42.
    Fan L, Lin C, Zhuo S, Chen L, Liu N, Luo Y, et al. Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur J Heart Fail. 2009;11(11):1023–30.PubMedGoogle Scholar
  43. 43.
    Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells. 2009;27(12):3021–31.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ahmed RP, et al. Sonic hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One. 2010;5(1):e8576.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu XM, et al. Experimental study of rat mesenchymal stem cells transfected with sonic hedgehog gene. Zhonghua Yi Xue Za Zhi. 2012;92(10):705–8.PubMedGoogle Scholar
  46. 46.
    Xue X, et al. Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells Int. 2015;2015:176409.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cho HM, Kim PH, Chang HK, Shen YM, Bonsra K, Kang BJ, et al. Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction. Stem Cells Transl Med. 2017;6(3):1040–51.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ishii M, Numaguchi Y, Okumura K, Kubota R, Ma X, Murakami R, et al. Mesenchymal stem cell-based gene therapy with prostacyclin synthase enhanced neovascularization in hindlimb ischemia. Atherosclerosis. 2009;206(1):109–18.PubMedGoogle Scholar
  49. 49.
    Duffy GP, D'Arcy S, Ahsan T, Nerem RM, O'Brien T, Barry F. Mesenchymal stem cells overexpressing ephrin-b2 rapidly adopt an early endothelial phenotype with simultaneous reduction of osteogenic potential. Tissue Eng A. 2010;16(9):2755–68.Google Scholar
  50. 50.
    Lu W, et al. Transplantation of rat mesenchymal stem cells overexpressing hypoxia-inducible factor 2alpha improves blood perfusion and arteriogenesis in a rat hindlimb ischemia model. Stem Cells Int. 2017;2017:3794817.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen S, Chen X, Wu X, Wei S, Han W, Lin J, et al. Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther. 2017;24(1):3–11.PubMedGoogle Scholar
  52. 52.
    Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. Int J Mol Sci 2017;18(4). PubMedCentralGoogle Scholar
  53. 53.
    Yu H, et al. Analgesia for neuropathic pain by dorsal root ganglion transplantation of genetically engineered mesenchymal stem cells: initial results. Mol Pain. 2015;11:5.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res. 2010;214(2):193–200.PubMedGoogle Scholar
  55. 55.
    •• Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, et al. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther. 2016;24(5):965–77. (Significant improvement of HD in mouse model with BDNF trasduced human MSCs.)PubMedPubMedCentralGoogle Scholar
  56. 56.
    Deng P, Torrest A, Pollock K, Dahlenburg H, Annett G, Nolta JA, et al. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells. Neural Regen Res. 2016;11(5):702–5.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Bierlein De la Rosa M, et al. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins. J Biosci Bioeng. 2017;124(5):572–82.PubMedGoogle Scholar
  58. 58.
    Tang H, Xiang Y, Jiang X, Ke Y, Xiao Z, Guo Y, et al. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs. Biochem Biophys Res Commun. 2013;440(4):502–8.PubMedGoogle Scholar
  59. 59.
    Son S, Liang MS, Lei P, Xue X, Furlani EP, Andreadis ST. Magnetofection mediated transient NANOG overexpression enhances proliferation and myogenic differentiation of human hair follicle derived mesenchymal stem cells. Bioconjug Chem. 2015;26(7):1314–27.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kalimuthu S, et al. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int. 2017;2017:8085637.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Kuroki LM, et al. Adenovirus platform enhances transduction efficiency of human mesenchymal stem cells: an opportunity for cellular carriers of targeted TRAIL-based TR3 biologics in ovarian cancer. PLoS One. 2017;12(12):e0190125.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hammer K, Kazcorowski A, Liu L, Behr M, Schemmer P, Herr I, et al. Engineered adenoviruses combine enhanced oncolysis with improved virus production by mesenchymal stromal carrier cells. Int J Cancer. 2015;137(4):978–90.PubMedGoogle Scholar
  63. 63.
    Balyasnikova IV, Franco-Gou R, Mathis JM, Lesniak MS. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface. J Tissue Eng Regen Med. 2010;4(4):247–58.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang J, Hou L, Wu X, Zhao D, Wang Z, Hu H, et al. Inhibitory effect of genetically engineered mesenchymal stem cells with apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem. 2016;416(1–2):193–203.PubMedGoogle Scholar
  65. 65.
    Shahrokhi S, Daneshmandi S, Menaa F. Tumor necrosis factor-alpha/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther. 2014;25(3):240–53.PubMedGoogle Scholar
  66. 66.
    Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther. 2008;15(21):1446–53.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Liu TM, Wu YN, Guo XM, Hui JHP, Lee EH, Lim B. Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev. 2009;18(7):1013–22.PubMedGoogle Scholar
  68. 68.
    Hoare M, Greiser U, Schu S, Mashayekhi K, Aydogan E, Murphy M, et al. Enhanced lipoplex-mediated gene expression in mesenchymal stem cells using reiterated nuclear localization sequence peptides. J Gene Med. 2010;12(2):207–18.PubMedGoogle Scholar
  69. 69.
    Blum JS, Barry MA, Mikos AG, Jansen JA. In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum Gene Ther. 2003;14(18):1689–701.PubMedGoogle Scholar
  70. 70.
    Zhang XY, la Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther. 2002;5(5 Pt 1):555–65.PubMedGoogle Scholar
  71. 71.
    Santos JL, et al. Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther. 2011;11(1):46–57.PubMedGoogle Scholar
  72. 72.
    Shan L. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells, in Molecular Imaging and Contrast Agent Database (MICAD). Bethesda: National Center for Biotechnology Information (US); 2004.Google Scholar
  73. 73.
    Shan L. Amine-modified silica-coated polyhedral superparamagnetic iron oxide nanoparticle-labeled rabbit bone marrow-derived mesenchymal stem cells, in Molecular Imaging and Contrast Agent Database (MICAD). Bethesda: National Center for Biotechnology Information (US); 2004.Google Scholar
  74. 74.
    Shan L. FluidMAG iron nanoparticle-labeled mesenchymal stem cells for tracking cell homing to tumors, in Molecular Imaging and Contrast Agent Database (MICAD). Bethesda: National Center for Biotechnology Information (US); 2004.Google Scholar
  75. 75.
    Stiehler M, Duch M, Mygind T, Li H, Ulrich-Vinther M, Modin C, et al. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells. Adv Exp Med Biol. 2006;585:31–48.PubMedGoogle Scholar
  76. 76.
    Ikeda Y, Makino A, Matchett WE, Holditch SJ, Lu B, Dietz AB, et al. A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther. 2016;23(3):256–62.PubMedGoogle Scholar
  77. 77.
    Chicaybam L, et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Front Bioeng Biotechnol. 2016;4:99.PubMedGoogle Scholar
  78. 78.
    Piao W, Wang H, Inoue M, Hasegawa M, Hamada H, Huang J. Transplantation of Sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease. Angiogenesis. 2010;13(3):203–10.PubMedGoogle Scholar
  79. 79.
    •• Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015;84:3–16. (Detail descriptions of different vector construct for genetic modifications.)PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kaczorowski A, Hammer K, Liu L, Villhauer S, Nwaeburu C, Fan P, et al. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget. 2016;7(8):9046–59.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Yuan X, Zhang Q, Li Z, Zhang X, Bao S, Fan D, et al. Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically. Cancer Lett. 2016;381(1):85–95.PubMedGoogle Scholar
  82. 82.
    Melen GJ, Franco-Luzón L, Ruano D, González-Murillo Á, Alfranca A, Casco F, et al. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett. 2016;371(2):161–70.PubMedGoogle Scholar
  83. 83.
    Du W, et al. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Natl Acad Sci U S A. 2017;114(30):E6157–65.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Farrell E, et al. vIL-10-overexpressing human MSCs modulate naive and activated T lymphocytes following induction of collagenase-induced osteoarthritis. Stem Cell Res Ther. 2016;7(1):74.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev. 2017;6:102–11.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Mohammadzadeh A, Pourfathollah AA, Shahrokhi S, Fallah A, Tahoori MT, Amari A, et al. Evaluation of AD-MSC (adipose-derived mesenchymal stem cells) as a vehicle for IFN-beta delivery in experimental autoimmune encephalomyelitis. Clin Immunol. 2016;169:98–106.PubMedGoogle Scholar
  87. 87.
    • Marin-Banasco C, et al. Gene therapy with mesenchymal stem cells expressing IFN-ss ameliorates neuroinflammation in experimental models of multiple sclerosis. Br J Pharmacol. 2017;174(3):238–53. (Alternative MSCs treatment for MS with genetic modification.)Google Scholar
  88. 88.
    Liao W, Pham V, Liu L, Riazifar M, Pone EJ, Zhang SX, et al. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials. 2016;77:87–97.PubMedGoogle Scholar
  89. 89.
    Zhao LX, Zhang J, Cao F, Meng L, Wang DM, Li YH, et al. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection. Exp Neurol. 2004;190(2):396–406.PubMedGoogle Scholar
  90. 90.
    Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96(3):1127–68.PubMedGoogle Scholar
  91. 91.
    Guo J, et al. Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction. J Biomed Sci. 2008;15(1):89–97.PubMedGoogle Scholar
  92. 92.
    Hahn JY, Cho HJ, Kang HJ, Kim TS, Kim MH, Chung JH, et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol. 2008;51(9):933–43.PubMedGoogle Scholar
  93. 93.
    Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311(1):62–73.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913–22.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bian L, Guo ZK, Wang HX, Wang JS, Wang H, Li QF, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo. 2009;23(1):21–7.PubMedGoogle Scholar
  96. 96.
    ** Shi Y, du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16(1):35–52. (A recent and excellent review on genetic modified MSCs in cancer treatments.)Google Scholar
  97. 97.
    Lazennec G, Lam PY. Recent discoveries concerning the tumor—mesenchymal stem cell interactions. Biochim Biophys Acta. 2016;1866(2):290–9.PubMedGoogle Scholar
  98. 98.
    Sage EK, Thakrar RM, Janes SM. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy. 2016;18(11):1435–45.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Yu JL, Deng R, Chung SK, Chan GCF. Epac activation regulates human mesenchymal stem cells migration and adhesion. Stem Cells. 2016;34(4):948–59.PubMedGoogle Scholar
  100. 100.
    Ma M, Ye JY, Deng R, Dee CM, Chan GCF. Mesenchymal stromal cells may enhance metastasis of neuroblastoma via SDF-1/CXCR4 and SDF-1/CXCR7 signaling. Cancer Lett. 2011;312(1):1–10.PubMedGoogle Scholar
  101. 101.
    Zhang Y, et al. Genetic modification of bone marrow mesenchymal stem cells with human CXCR4 gene and migration in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009;26(3):595–600.PubMedGoogle Scholar
  102. 102.
    Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–48.PubMedGoogle Scholar
  103. 103.
    Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108(10):1939–46.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ruixia Deng
    • 1
    • 2
  • Anna Hing Yee Law
    • 1
  • Jiangang Shen
    • 2
  • Godfrey Chi-Fung Chan
    • 1
    • 3
    Email author
  1. 1.Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, 7/F, Laboratory BuildingThe University of Hong KongPokfulamHong Kong
  2. 2.School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
  3. 3.Department of Paediatrics and Adolescent MedicineQueen Mary HospitalHong KongHong Kong

Personalised recommendations