Skip to main content

Advertisement

Log in

In Utero Gene Therapy and Genome Editing

  • Prenatal Therapies (WH Peranteau, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the current status of in utero gene therapy and postnatal in vivo genome editing with an eye toward prenatal genome editing.

Recent Findings

The rational for gene therapy and genome editing in utero is described, specifically the small size of the fetus, fetal immunologic immaturity, prenatal accessibility of stem and progenitor cells, and the ability to treat target diseases prior to birth. We review studies in normal and disease small and large animal models which demonstrate the feasibility and safety of in utero gene therapy using a variety of viral vectors. Postnatal in vivo genome editing with CRISPR-Cas9 in a number of murine disease models is discussed including the preference for nonhomologous end-joining compared to homology-directed repair in non-proliferating adult cells as a potential benefit to application of CRISPR-Cas9 genome editing to the fetus. Finally, the ethical challenges of human in utero gene therapy are discussed in the context of the EVERREST trial that is currently being designed.

Summary

In utero gene therapy and genome editing is a developing field with great potential to treat congenital monogenic diseases. More research in small and large animal models is required before clinical translation can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–60. https://doi.org/10.1038/nature15818.

    Article  CAS  PubMed  Google Scholar 

  2. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–46. https://doi.org/10.1038/mt.2016.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dilworth MR, Kusinski LC, Baker BC, Renshall LJ, Greenwood SL, Sibley CP, et al. Defining fetal growth restriction in mice: a standardized and clinically relevant approach. Placenta. 2011;32(11):914–6. https://doi.org/10.1016/j.placenta.2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  4. Owen RD. Immunogentic consequences of vascular anastomoses between bovine twins. Science. 1945;102(2651):400–1. https://doi.org/10.1126/science.102.2651.400.

    Article  CAS  PubMed  Google Scholar 

  5. Witt R, MacKenzie TC, Peranteau WH. Fetal stem cell and gene therapy. Semin Fetal Neonatal Med. 2017;22(6):410–4. https://doi.org/10.1016/j.siny.2017.05.003.

    Article  PubMed  Google Scholar 

  6. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.

    Article  CAS  PubMed  Google Scholar 

  7. Simonsen M. The acquired immunity concept in kidney homotransplantation. Ann N Y Acad Sci. 1955;59(3):448–52. https://doi.org/10.1111/j.1749-6632.1955.tb45959.x.

    Article  CAS  PubMed  Google Scholar 

  8. Calcedo R, Griesenbach U, Dorgan DJ, Soussi S, Boyd AC, Davies JC, et al. Self-reactive CFTR T cells in humans: implications for gene therapy. Hum Gene Ther Clin Dev. 2013;24(3):108–15. https://doi.org/10.1089/humc.2012.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22. https://doi.org/10.1038/nm1549.

    Article  CAS  PubMed  Google Scholar 

  10. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18(9):1586–8. https://doi.org/10.1128/CVI.05107-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang D, Mou H, Li S, Li Y, Hough S, Tran K, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther. 2015;26(7):432–42. https://doi.org/10.1089/hum.2015.087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL, et al. Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15(9):1677–85. https://doi.org/10.1038/sj.mt.6300219.

    Article  CAS  PubMed  Google Scholar 

  13. Davey MG, Riley JS, Andrews A, Tyminski A, Limberis M, Pogoriler JE, et al. Induction of immune tolerance to foreign protein via adeno-associated viral vector gene transfer in mid-gestation fetal sheep. PLoS One. 2017;12(1):e0171132. https://doi.org/10.1371/journal.pone.0171132.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colletti E, Lindstedt S, Park PJ, Almeida-Porada G, Porada CD. Early fetal gene delivery utilizes both central and peripheral mechanisms of tolerance induction. Exp Hematol. 2008;36(7):816–22. https://doi.org/10.1016/j.exphem.2008.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran ND, Porada CD, Almeida-Porada G, Glimp HA, Anderson WF, Zanjani ED. Induction of stable prenatal tolerance to beta-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood. 2001;97(11):3417–23. https://doi.org/10.1182/blood.V97.11.3417.

    Article  CAS  PubMed  Google Scholar 

  16. Meertens L, Zhao Y, Rosic-Kablar S, Li L, Chan K, Dobson H, et al. In utero injection of alpha-L-iduronidase-carrying retrovirus in canine mucopolysaccharidosis type I: infection of multiple tissues and neonatal gene expression. Hum Gene Ther. 2002;13(15):1809–20. https://doi.org/10.1089/104303402760372918.

    Article  CAS  PubMed  Google Scholar 

  17. Garrett DJ, Larson JE, Dunn D, Marrero L, Cohen JC. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates. BMC Biotechnol. 2003;3(1):16. https://doi.org/10.1186/1472-6750-3-16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–99. https://doi.org/10.1038/nrd.2016.280.

    Article  CAS  PubMed  Google Scholar 

  19. Potter H, Heller R. Transfection by electroporation. Curr Protoc Immunol. 2017;117:10.5.1–9. https://doi.org/10.1002/cpim.24.

    Google Scholar 

  20. Han X, Liu Z, Jo MC, Zhang K, Li Y, Zeng Z, et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv. 2015;1(7):e1500454. https://doi.org/10.1126/sciadv.1500454.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659–62. https://doi.org/10.1016/j.stem.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  22. •• Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9. https://doi.org/10.1038/nature23305. This is the first described in vitro CRISPR-Cas9 homology-directed repair of human embryonic cells with correction in all cells.

    Article  CAS  PubMed  Google Scholar 

  23. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081.

    Article  CAS  PubMed  Google Scholar 

  24. Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073–80. https://doi.org/10.1038/mt.2008.76.

    Article  CAS  PubMed  Google Scholar 

  26. Lisowski L, Tay SS, Alexander IE. Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol. 2015;24:59–67. https://doi.org/10.1016/j.coph.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  27. Majowicz A, Salas D, Zabaleta N, Rodriguez-Garcia E, Gonzalez-Aseguinolaza G, Petry H, et al. Successful repeated hepatic gene delivery in mice and non-human primates achieved by sequential administration of AAV5ch and AAV1. Mol Ther. 2017;25(8):1831–42. https://doi.org/10.1016/j.ymthe.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  28. Mattar CN, Nathwani AC, Waddington SN, Dighe N, Kaeppel C, Nowrouzi A, et al. Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques. Mol Ther. 2011;19(11):1950–60. https://doi.org/10.1038/mt.2011.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sugano H, Matsumoto T, Miyake K, Watanabe A, Iijima O, Migita M, et al. Successful gene therapy in utero for lethal murine hypophosphatasia. Hum Gene Ther. 2012;23(4):399–406. https://doi.org/10.1089/hum.2011.148.

    Article  CAS  PubMed  Google Scholar 

  30. Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A, et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther. 2004;9(2):182–8. https://doi.org/10.1016/j.ymthe.2003.11.013.

    Article  CAS  PubMed  Google Scholar 

  31. Endo M, Henriques-Coelho T, Zoltick PW, Stitelman DH, Peranteau WH, Radu A, et al. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther. 2010;17(1):61–71. https://doi.org/10.1038/gt.2009.115.

    Article  CAS  PubMed  Google Scholar 

  32. Joyeux L, Danzer E, Limberis MP, Zoltick PW, Radu A, Flake AW, et al. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice. Hum Gene Ther Methods. 2014;25(3):197–205. https://doi.org/10.1089/hgtb.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stitelman DH, Brazelton T, Bora A, Traas J, Merianos D, Limberis M, et al. Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9. Mol Ther Methods Clin Dev. 2014;1:14040. https://doi.org/10.1038/mtm.2014.40.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Mattar CNZ, Gil-Farina I, Rosales C, Johana N, Tan YYW, McIntosh J, et al. In utero transfer of adeno-associated viral vectors produces long-term factor IX levels in a cynomolgus macaque model. Mol Ther. 2017;25(8):1843–53. https://doi.org/10.1016/j.ymthe.2017.04.003. In utero primate gene therapy for hemophilia results in long term therapeutic human factor IX gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen JS, Meng XL, Yokoo T, Sakurai K, Watabe K, Ohashi T, et al. Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease. J Gene Med. 2005;7(5):540–51. https://doi.org/10.1002/jgm.719.

    Article  CAS  PubMed  Google Scholar 

  36. Reay DP, Bilbao R, Koppanati BM, Cai L, O'Day TL, Jiang Z, et al. Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther. 2008;15(7):531–6. https://doi.org/10.1038/gt.2008.8.

    Article  CAS  PubMed  Google Scholar 

  37. Abi-Nader KN, David AL. Fetal muscle gene therapy/gene delivery in large animals. Methods Mol Biol. 2011;709:239–56. https://doi.org/10.1007/978-1-61737-982-6_15.

    Article  CAS  PubMed  Google Scholar 

  38. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife. 2014;3:e04766. https://doi.org/10.7554/eLife.04766.

    PubMed  PubMed Central  Google Scholar 

  39. Roybal JL, Endo M, Radu A, Gray L, Todorow CA, Zoltick PW, et al. Early gestational gene transfer with targeted ATP7B expression in the liver improves phenotype in a murine model of Wilson’s disease. Gene Ther. 2012;19(11):1085–94. https://doi.org/10.1038/gt.2011.186.

    Article  CAS  PubMed  Google Scholar 

  40. Han XD, Lin C, Chang J, Sadelain M, Kan YW. Fetal gene therapy of alpha-thalassemia in a mouse model. Proc Natl Acad Sci U S A. 2007;104(21):9007–11. https://doi.org/10.1073/pnas.0702457104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Endo M, Zoltick PW, Radu A, Jiang Q, Qiujie J, Matsui C, et al. Early intra-amniotic gene transfer using lentiviral vector improves skin blistering phenotype in a murine model of Herlitz junctional epidermolysis bullosa. Gene Ther. 2012;19(5):561–9. https://doi.org/10.1038/gt.2011.135.

    Article  CAS  PubMed  Google Scholar 

  42. Waddington SN, Buckley SM, Nivsarkar M, Jezzard S, Schneider H, Dahse T, et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood. 2003;101(4):1359–66. https://doi.org/10.1182/blood-2002-03-0779.

    Article  CAS  PubMed  Google Scholar 

  43. David A, Cook T, Waddington S, Peebles D, Nivsarkar M, Knapton H, et al. Ultrasound-guided percutaneous delivery of adenoviral vectors encoding the beta-galactosidase and human factor IX genes to early gestation fetal sheep in utero. Hum Gene Ther. 2003;14(4):353–64. https://doi.org/10.1089/104303403321208952.

    Article  CAS  PubMed  Google Scholar 

  44. Keswani SG, Balaji S, Katz AB, King A, Omar K, Habli M, et al. Intraplacental gene therapy with Ad-IGF-1 corrects naturally occurring rabbit model of intrauterine growth restriction. Hum Gene Ther. 2015;26(3):172–82. https://doi.org/10.1089/hum.2014.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carr DJ, Wallace JM, Aitken RP, Milne JS, Martin JF, Zachary IC, et al. Peri- and postnatal effects of prenatal adenoviral VEGF gene therapy in growth-restricted sheep. Biol Reprod. 2016;94(6):142. https://doi.org/10.1095/biolreprod.115.133744.

    Article  PubMed  Google Scholar 

  46. Carr DJ, Wallace JM, Aitken RP, Milne JS, Mehta V, Martin JF, et al. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. Hum Gene Ther. 2014;25(4):375–84. https://doi.org/10.1089/hum.2013.214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. • Sheppard M, Spencer RN, Ashcroft R, David AL, Consortium E. Ethics and social acceptability of a proposed clinical trial using maternal gene therapy to treat severe early-onset fetal growth restriction. Ultrasound Obstet Gynecol. 2016;47(4):484–91. https://doi.org/10.1002/uog.15880. This paper explores ethical considerations for the implementation of the EVERREST trial.

    Article  CAS  PubMed  Google Scholar 

  48. Krishnan T, David AL. Placenta-directed gene therapy for fetal growth restriction. Semin Fetal Neonatal Med. 2017;22(6):415–22. https://doi.org/10.1016/j.siny.2017.04.005.

    Article  PubMed  Google Scholar 

  49. Lieber MR, Gu J, Lu H, Shimazaki N, Tsai AG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem. 2010;50:279–96. https://doi.org/10.1007/978-90-481-3471-7_14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44(1):113–39. https://doi.org/10.1146/annurev-genet-051710-150955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, et al. Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res. 2006;34(17):4791–800. https://doi.org/10.1093/nar/gkl645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, et al. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res. 2009;37(16):5405–19. https://doi.org/10.1093/nar/gkp548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, et al. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol. 2007;371(1):49–65. https://doi.org/10.1016/j.jmb.2007.04.079.

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015;33(12):1256–63. https://doi.org/10.1038/nbt.3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Modares M, Shariati L, Hejazi Z, Shahbazi M, Tabatabaiefar MA, Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: an approach towards gene therapy of Beta thalassemia. J Cell Biochem. 2017; https://doi.org/10.1002/jcb.26412.

  56. Sorek R, Kunin V, Hugenholtz P. CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008;6(3):181–6. https://doi.org/10.1038/nrmicro1793.

    Article  CAS  PubMed  Google Scholar 

  57. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  Google Scholar 

  58. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. GRNA-programmed genome editing in human cells. elife. 2013;2:e00471. https://doi.org/10.7554/eLife.00471.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. https://doi.org/10.1126/science.1232033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kemaladewi DU, Maino E, Hyatt E, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med. 2017; https://doi.org/10.1038/nm4367.

  62. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–11. https://doi.org/10.1126/science.aad5177.

    Article  CAS  PubMed  Google Scholar 

  63. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143.

    Article  CAS  PubMed  Google Scholar 

  64. Ouellet DL, Cherif K, Rousseau J, Tremblay JP. Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther. 2017;24(5):265–74. https://doi.org/10.1038/gt.2016.89.

    Article  CAS  PubMed  Google Scholar 

  65. • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551–3. https://doi.org/10.1038/nbt.2884. This is one of the first in vivo studies using CRISPR-Cas9 to demonstrate disease model correction postnatally in a murine model of hereditary tyrosinemia, an otherwise fatal disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ah Mew N, Krivitzky L, McCarter R, Batshaw M, Tuchman M. Network UCDCotRDCR. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr. 2013;162(2):324–9.e1. https://doi.org/10.1016/j.jpeds.2012.06.065.

    Article  CAS  PubMed  Google Scholar 

  67. Hodges PE, Rosenberg LE. The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc Natl Acad Sci U S A. 1989;86(11):4142–6. https://doi.org/10.1073/pnas.86.11.4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8. https://doi.org/10.1038/nbt.3469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017;25(5):1076–94. https://doi.org/10.1016/j.ymthe.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  70. George LA, Fogarty PF. Gene therapy for hemophilia: past, present and future. Semin Hematol. 2016;53(1):46–54. https://doi.org/10.1053/j.seminhematol.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  71. Porada CD, Park PJ, Tellez J, Ozturk F, Glimp HA, Almeida-Porada G, et al. Male germ-line cells are at risk following direct-injection retroviral-mediated gene transfer in utero. Mol Ther. 2005;12(4):754–62. https://doi.org/10.1016/j.ymthe.2005.05.011.

    Article  CAS  PubMed  Google Scholar 

  72. Park PJ, Colletti E, Ozturk F, Wood JA, Tellez J, Almeida-Porada G, et al. Factors determining the risk of inadvertent retroviral transduction of male germ cells after in utero gene transfer in sheep. Hum Gene Ther. 2009;20(3):201–15. https://doi.org/10.1089/hum.2007.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Peranteau.

Ethics declarations

Conflict of Interest

Heather A. Hartman, Avery C. Rossidis, and William H. Peranteau declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prenatal Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartman, H.A., Rossidis, A.C. & Peranteau, W.H. In Utero Gene Therapy and Genome Editing. Curr Stem Cell Rep 4, 52–60 (2018). https://doi.org/10.1007/s40778-018-0117-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0117-9

Keywords

Navigation