Skip to main content

Advertisement

Log in

Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in Drug Resistance

  • Mathematical Models of Stem Cell Behavior (M Kohandel, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Successful, durable cancer treatment is limited by drug resistance. Cancer stem cells (CSC) comprise (typically) a rare tumor subpopulation that contributes both intrinsic drug resistance and tumor re-initiation after therapy. Emerging evidence suggests that drug resistance is more complex than this single-cell level might suggest, and is likely governed by dynamics encompassing the entire tumor population. Here, we discuss the complexity of drug resistance by focusing on efforts that interface biology (wet lab) with mathematical modeling and simulation (dry lab) to study and explain the role of CSC and other cancer cells in the context of the entire ecosystem.

Recent Findings

Starting from biological evidence, we review the current state of cancer research from the perspective of the single-cell level, “The cancer cell,” its intrinsic physiopathology and its response to drug exposure. We discuss insufficiencies of this level of observation, in particular, the unaccounted for resistance to targeted therapies, and show why it is necessary to consider the entirety of the cell population, which is the only way to capture the role of biological heterogeneity. Importantly, we review how mathematical models have been implemented to elucidate mechanisms of drug resistance, and efforts made to validate biological experiments. Finally, we present emerging biological models, and therapeutic strategies inspired by mathematics, with the goal of improving the clinical management of cancer.

Summary

Over the past century, we have learned that cancer drug resistance is extraordinarily complex and requires an interdisciplinary scientific effort to unmask. The network of communication between and among cells within the diverse tumor heterogeneity drives acquired and intrinsic mechanisms of resistance. Harnessing biology and math to simulate, study, and explain the mechanisms of resistance, by considering the whole tumor population, is providing new clues to overcome it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  2. Okabe S, Tauchi T, Ohyashiki K. Characteristics of dasatinib- and imatinib-resistant chronic myelogenous leukemia cells. Clin Cancer Res. 2008;14(19):6181–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gorman MF, et al. Outcome for children treated for relapsed or refractory acute myelogenous leukemia (rAML): a Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr Blood Cancer. 2010;55(3):421–9.

    Article  PubMed  Google Scholar 

  4. de Rooij JD, Zwaan CM, van den Heuvel-Eibrink M. Pediatric AML: from biology to clinical management. J Clin Med. 2015;4(1):127–49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013;59(1):168–79.

    Article  CAS  PubMed  Google Scholar 

  6. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. American Cancer Society. Early history of cancer. 2014. https://www.cancer.org/cancer/cancer-basics/history-of-cancer/what-is-cancer.html.

  8. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  CAS  PubMed  Google Scholar 

  9. Christakis P. The birth of chemotherapy at Yale. Bicentennial lecture series: surgery grand round. Yale J Biol Med. 2011;84(2):169–72.

    PubMed  PubMed Central  Google Scholar 

  10. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 1943;28(6):491–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Skipper HE. The forty-year-old mutation theory of Luria and Delbruck and its pertinence to cancer chemotherapy. Adv Cancer Res. 1983;40:331–63.

    Article  CAS  PubMed  Google Scholar 

  12. Law LW. Origin of the resistance of leukaemic cells to folic acid antagonists. Nature. 1952;169(4302):628–9.

    Article  CAS  PubMed  Google Scholar 

  13. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63(11–12):1727–33.

    CAS  PubMed  Google Scholar 

  14. Riordan JR, Ling V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem. 1979;254(24):12701–5.

    CAS  PubMed  Google Scholar 

  15. Flintoff WF, et al. Overproduction of dihydrofolate reductase and gene amplification in methotrexate-resistant Chinese hamster ovary cells. Mol Cell Biol. 1982;2(3):275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gambacorti-Passerini C. Part I: milestones in personalised medicine—imatinib. Lancet Oncol. 2008;9(6):600.

    Article  PubMed  Google Scholar 

  17. Mahon FX, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96(3):1070–9.

    CAS  PubMed  Google Scholar 

  18. Berrieman HK, Lind MJ, Cawkwell L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. 2004;5(3):158–64.

    Article  CAS  PubMed  Google Scholar 

  19. Talpaz M, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002;99(6):1928–37.

    Article  CAS  PubMed  Google Scholar 

  20. Hirschmann-Jax C, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta PB, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan X, et al. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26(13):1932–40.

    Article  CAS  PubMed  Google Scholar 

  23. • Sharma SV, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80. A milestone paper that elicits transient, epigenetically controlled, drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta PB, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146(4):633–44.

    Article  CAS  PubMed  Google Scholar 

  25. Goldman A, et al. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun. 2015;6:6139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pisco AO, et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat Commun. 2013;4:2467.

    Article  PubMed  PubMed Central  Google Scholar 

  27. O'Brien CA, Kreso A, Jamieson CH. Cancer stem cells and self-renewal. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(12):3113–20.

    Article  Google Scholar 

  28. Patel P, Chen EI. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol (Lausanne). 2012;3:125.

    Google Scholar 

  29. Trumpp A, Wiestler OD. Mechanisms of disease: cancer stem cells—targeting the evil twin. Nat Clin Pract Oncol. 2008;5(6):337–47.

    CAS  PubMed  Google Scholar 

  30. Kern SE, Shibata D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res. 2007;67(19):8985–8.

    Article  CAS  PubMed  Google Scholar 

  31. Klonisch T, et al. Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med. 2008;14(10):450–60.

    Article  CAS  PubMed  Google Scholar 

  32. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.

    Article  CAS  PubMed  Google Scholar 

  33. Wichmann HE, Loeffler M. Mathematical modeling of cell proliferation: stem cell regulation in hemopoiesis. Vol. 1. Boca Raton: CRC Press; 1985.

  34. Ganguly R, Puri IK. Mathematical model for the cancer stem cell hypothesis. Cell Prolif. 2006;39(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  35. Turner C, et al. Characterization of brain cancer stem cells: a mathematical approach. Cell Prolif. 2009;42(4):529–40.

    Article  CAS  PubMed  Google Scholar 

  36. Michor F. Mathematical models of cancer stem cells. J Clin Oncol. 2008;26(17):2854–61.

    Article  PubMed  Google Scholar 

  37. Boman BM, et al. Symmetric division of cancer stem cells—a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin Pharmacol Ther. 2007;81(6):893–8.

    Article  CAS  PubMed  Google Scholar 

  38. van Leeuwen IM, et al. Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif. 2006;39(3):157–81.

    Article  PubMed  Google Scholar 

  39. Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016;17(7):413–25.

    Article  CAS  PubMed  Google Scholar 

  40. Heerboth S, et al. Use of epigenetic drugs in disease: an overview. Genet Epigenet. 2014;6:9–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner C, Kohandel M. Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: a mathematical approach. J Theor Biol. 2010;265(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  42. Chaffer CL, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108(19):7950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jilkine A, Gutenkunst RN. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLoS Comput Biol. 2014;10(3):e1003481.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaveh K, Kohandel M, Sivaloganathan S. Replicator dynamics of cancer stem cell: selection in the presence of differentiation and plasticity. Math Biosci. 2016;272:64–75.

    Article  PubMed  Google Scholar 

  45. Goldman A. Tailoring combinatorial cancer therapies to target the origins of adaptive resistance. Mol Cell Oncol. 2016;3(1):e1030534.

    Article  PubMed  Google Scholar 

  46. Goldman, A., et al. Rationally designed 2-in-1 nanoparticles can overcome adaptive resistance in cancer. ACS Nano. 2016;10(6):5823–34.

  47. Sun X, Bao J, Shao Y. Mathematical modeling of therapy-induced cancer drug resistance: connecting cancer mechanisms to population survival rates. Sci Rep. 2016;6:22498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tovar JD. Supramolecular construction of optoelectronic biomaterials. Acc Chem Res. 2013;46(7):1527–37.

    Article  CAS  PubMed  Google Scholar 

  49. Marusyk A, et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514(7520):54–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting prochlorococcus ecotypes. Nature. 1998;393(6684):464–7.

    Article  CAS  PubMed  Google Scholar 

  51. Valaskova V, et al. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 2009;3(10):1218–21.

    Article  CAS  PubMed  Google Scholar 

  52. Hardin G. The competitive exclusion principle. Science. 1960;131(3409):1292–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gerlinger M, Norton L, Swanton C. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013;369(12):1172–3.

    Article  CAS  PubMed  Google Scholar 

  54. Zanoni M, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nyga A, et al. A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater. 2013;9(8):7917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arai K, et al. A novel high-throughput 3D screening system for EMT inhibitors: a pilot screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516. PLoS One. 2016;11(9):e0162394.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Majumder B, et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun. 2015;6:6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Clairambault.

Ethics declarations

Conflict of Interest

Aaron Goldman, Mohammad Kohandel, and Jean Clairambault declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mathematical Models of Stem Cell Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, A., Kohandel, M. & Clairambault, J. Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in Drug Resistance. Curr Stem Cell Rep 3, 253–259 (2017). https://doi.org/10.1007/s40778-017-0097-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0097-1

Keywords

Navigation