Skip to main content
Log in

Cancer Stem Cells, the Tipping Point: Minority Rules?

  • Mathematical Models of Stem Cell Behavior (M Kohandel, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Putative studies continue to support the assertion of the cancer stem cell (CSC) hypothesis, namely that a very small subgroup of a malignant tumor population initiates and drives tumor growth. These cells are purported to possess similar biological properties to their normal adult stem cell counterparts. The CSC hypothesis arises from the observation that tumors like normal tissues have their origin in cells that display potential for self-renewal as well as the ability to generate differentiated cells of various lineages. In addition, CSCs have developed basic characteristics that enable them to evade the effects of standard therapies and these may in fact underlie the mechanisms leading to chemo-resistance and tumor relapse.

Recent Findings

In recent years, mathematical and computational modeling have emerged as powerful tools in biomedical research that can be used to study biological systems at multiple scales ranging from molecular processes to cell-cell interactions and how these interactions lead to changes at tissue and organ levels. In addition to accelerating biomedical research through computational simulation of physical experiments, modeling can also be used to guide experimentalists by identifying possible factors and mechanisms underlying the particular problem being studied; this in turn may suggest physical experiments that eventually lead to the resolution of this very problem.

Summary

In this paper, we review mathematical models that explore the role of CSCs in treatment response, in developing chemo and radio resistance, as well as those that suggest new treatment strategies. In addition, mathematical models that focus on optimal therapeutic protocols will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marjanovic ND, Weinberg RA, Chaffer CL. Poised with purpose: cell plasticity enhances tumorigenicity. 2013: 2713–2714. doi:10.4161/cc.26075.

  2. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9. doi:10.1016/j.cell.2009.08.017.

    Article  CAS  PubMed  Google Scholar 

  3. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8. doi:10.1126/science.959840.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146(4):633–44. doi:10.1016/j.cell.2011.07.026.

    Article  CAS  PubMed  Google Scholar 

  5. Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013;59(1):168–79. doi:10.1373/clinchem.2012.184655.

    Article  CAS  PubMed  Google Scholar 

  6. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45. doi:10.1200/JCO.2007.15.1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mathews LA, Cabarcas SM. DNA repair of cancer stem cells. Hurt EM, editor. Springer; 2013.

  8. Boman BM, Wicha MS. Cancer stem cells: a step toward the cure. J Clin Oncol. 2008;26(17):2795–9. doi:10.1200/JCO.2008.17.7436.

    Article  PubMed  Google Scholar 

  9. Anderson AR, Quaranta V. Integrative mathematical oncology. Nat Rev Cancer. 2008;8(3):227–34. doi:10.1038/nrc2329.

    Article  CAS  PubMed  Google Scholar 

  10. Altrock PM, Liu LL, Michor F. The mathematics of cancer: integrating quantitative models. Nat Rev Cancer. 2015;15(12):730–45. doi:10.1038/nrc4029.

    Article  CAS  PubMed  Google Scholar 

  11. Byrne HM. Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer. 2010;10(3):221.

    Article  CAS  PubMed  Google Scholar 

  12. Enderling H. Cancer stem cells: small subpopulation or evolving fraction? Integr Biol. 2015;7(1):14–23. doi:10.1039/C4IB00191E.

    Article  Google Scholar 

  13. Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol. 2004;230(1):1–20. doi:10.1016/j.jtbi.2004.03.024.

    Article  CAS  PubMed  Google Scholar 

  14. Dhawan A, Kohandel M, Hill R, Sivaloganathan S. Tumour control probability in cancer stem cells hypothesis. PLoS One. 2014;9(5):e96093. doi:10.1371/journal.pone.0096093.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Enderling H, Park D, Hlatky L, Hahnfeldt P. The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Math Model Nat Phenom. 2009;4(3):117–33. doi:10.1051/mmnp/20094305.

    Article  Google Scholar 

  16. Stamatakos GS, Antipas VP, Uzunoglu NK, Dale RG. A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density. Br J Radiol. 2014; doi:10.1259/bjr/30604050.

  17. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977;61(7):1307.

    CAS  PubMed  Google Scholar 

  18. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep. 1986;70(1):163.

    CAS  PubMed  Google Scholar 

  19. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of intergroup trial C9741/cancer and leukemia group B trial 9741. J Clin Oncol. 2003;21(8):1431–9. doi:10.1200/JCO.2003.09.081.

    Article  CAS  PubMed  Google Scholar 

  20. Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58(690):515–28. doi:10.1259/0007-1285-58-690-515.

    Article  CAS  PubMed  Google Scholar 

  21. Oliver R. A comparison of the effects of acute and protracted gamma-radiation on the growth of seedlings of Vicia faba: part II. Theoretical calculations. Int J Radiat Biol Relat Stud Phys Chem Med. 1964;8(5):475–88. doi:10.1080/09553006414550581.

    Article  CAS  PubMed  Google Scholar 

  22. Roesch WC. Third symposium on neutron dosimetry in biology and medicine.

  23. Thames HD Jr, Withers HR, Peters LJ. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair. Br J Cancer Suppl. 1984;6:263.

    PubMed  PubMed Central  Google Scholar 

  24. Thames HD. An ‘incomplete-repair’model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(3):319–39. doi:10.1080/09553008514550461.

    Article  CAS  PubMed  Google Scholar 

  25. Coldman AJ, Goldie JH. A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol. 1986;48(3–4):279–92. doi:10.1016/S0092-8240(86)90028-5.

    Article  CAS  PubMed  Google Scholar 

  26. Goldie JH, Coldman AJ. Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat Rep. 1983;67(10):923–31.

    CAS  PubMed  Google Scholar 

  27. Panetta JC. A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Bull Math Biol. 1996;58(3):425–47. doi:10.1016/0092-8240(95)00346-0.

    Article  CAS  PubMed  Google Scholar 

  28. Swan GW. Optimization of human cancer radiotherapy. Springer Science $\&$ Business Media; 2013.

  29. Bonadonna G, Zambetti M, Moliterni A, Gianni L, Valagussa P. Clinical relevance of different sequencing of doxorubicin and cyclophosphamide, methotrexate, and fluorouracil in operable breast cancer. J Clin Oncol. 2004;22(9):1614–20. doi:10.1200/JCO.2004.07.190.

    Article  CAS  PubMed  Google Scholar 

  30. Foo J, Michor F. Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies. PLoS Comput Biol. 2009;5(11):e1000557. doi:10.1371/journal.pcbi.1000557.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin R, Teo KL. Optimal control of drug administration in cancer chemotherapy. World Scientific; 1994.

  32. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435(7046):1267–70. doi:10.1038/nature03669.

    Article  CAS  PubMed  Google Scholar 

  33. Costa MI, Boldrini JL, Bassanezi RC. Optimal chemical control of populations developing drug resistance. Math Med Biol. 1992;9(3):215–26. doi:10.1093/imammb/9.3.215.

    Article  CAS  Google Scholar 

  34. Kendal WS. Technical report a closed-form description of tumour control with fractionated radiotherapy and repopulation. Int J Radiat Biol. 1998;73(2):207–10. doi:10.1080/095530098142590.

    Article  CAS  PubMed  Google Scholar 

  35. Munro TR, Gilbert CW. The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol. 1961;34(400):246–51. doi:10.1259/0007-1285-34-400-246.

    Article  CAS  PubMed  Google Scholar 

  36. Tucker SL, Thames HD, Taylor JM. How well is the probability of tumor cure after fractionated irradiation described by Poisson statistics? Radiat Res. 1990;124(3):273–82. doi:10.2307/3577839.

    Article  CAS  PubMed  Google Scholar 

  37. Yakovlev AY. Comments on the distribution of clonogens in irradiated tumors. Radiat Res. 1993;134(1):117–20. doi:10.2307/3578510.

    Article  PubMed  Google Scholar 

  38. Zaider M, Minerbo GN. Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys Med Biol. 2000;45(2):279.

    Article  CAS  PubMed  Google Scholar 

  39. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. doi:10.1038/nature05236.

    Article  CAS  PubMed  Google Scholar 

  40. • Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016; doi:10.1155/2016/1740936. The paper discusses CSC properties, more specifically plasticity and quiescence, leading to treatment resistance and how these findings can contribute to development of new therapies.

  41. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84. doi:10.1038/nrc1590.

    Article  CAS  PubMed  Google Scholar 

  42. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells. 2010;28(4):639–48. doi:10.1002/stem.318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics. 2006;172(4):2557–66. doi:10.1534/genetics.105.049791.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Komarova NL, Wodarz D. Effect of cellular quiescence on the success of targeted CML therapy. PLoS One. 2007;2(10):e990. doi:10.1371/journal.pone.0000990.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Poleszczuk J, Enderling H. Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse. Stem Cells Int. 2015;2016 doi:10.1155/2016/3923527.

  46. Gao X, McDonald JT, Hlatky L, Enderling H. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res. 2013;73(5):1481–90. doi:10.1158/0008-5472.CAN-12-3429.

    Article  CAS  PubMed  Google Scholar 

  47. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. nature. 2004;432(7015):396-401. doi:10.1038/nature03031.

  48. Charafe-Jauffret E, Ginestier C, Birnbaum D. Breast cancer stem cells: tools and models to rely on. BMC Cancer. 2009;9(1):202. doi:10.1186/1471-2407-9-202.

    Article  PubMed  PubMed Central  Google Scholar 

  49. •• Koury J, Zhong L, Hao J. Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017;2017 doi:10.1155/2017/2925869. The role of Wnt, Hedgehog, and Notch pathways in CSCs has been discussed and studies that investigate new therapies targeting these pathways have been reviewd.

  50. Maugeri-Saccà M, Vigneri P, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res. 2011;17(15):4942–7. doi:10.1158/1078-0432.CCR-10-2538.

    Article  PubMed  Google Scholar 

  51. Ogawa K, Yoshioka Y, Isohashi F, Seo Y, Yoshida K, Yamazaki H. Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer Res. 2013;33(3):747–54.

    CAS  PubMed  Google Scholar 

  52. •• Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, et al. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun. 2015;6 doi:10.1038/ncomms7139. The study shows that using inhibitors of SFK/Hck after temporal administration of taxane treatment can sensitize previously chemo-resistant cells to chemotherapy.

  53. Dingli D, Michor F. Successful therapy must eradicate cancer stem cells. Stem Cells. 2006;24(12):2603–10. doi:10.1634/stemcells.2006-0136.

    Article  CAS  PubMed  Google Scholar 

  54. Youssefpour H, Li X, Lander AD, Lowengrub JS. Multispecies model of cell lineages and feedback control in solid tumors. J Theor Biol. 2012;304:39–59. doi:10.1016/j.jtbi.2012.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bachman JW, Hillen T. Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Front Oncol. 2013;3:52. doi:10.3389/fonc.2013.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5. doi:10.1038/nature05349.

    Article  CAS  PubMed  Google Scholar 

  57. Turner C, Stinchcombe AR, Kohandel M, Singh S, Sivaloganathan S. Characterization of brain cancer stem cells: a mathematical approach. Cell Prolif. 2009;42(4):529–40. doi:10.1111/j.1365-2184.2009.00619.x.

    Article  CAS  PubMed  Google Scholar 

  58. Badri H, Leder K. Optimal treatment and stochastic modeling of heterogeneous tumors. Biol Direct. 2016;11(1):40. doi:10.1186/s13062-016-0142-5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kohandel M, Sivaloganathan S, Oza A. Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol. 2006;242(1):62–8. doi:10.1016/j.jtbi.2006.02.001.

    Article  CAS  PubMed  Google Scholar 

  60. Leder K, Pitter K, LaPlant Q, Hambardzumyan D, Ross BD, Chan TA, et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell. 2014;156(3):603–16. doi:10.1016/j.cell.2013.12.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M. Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol. 2007;52(11):3291. doi:10.1088/0031-9155/52/11/023.

    Article  CAS  PubMed  Google Scholar 

  62. Badri H, Pitter K, Holland EC, Michor F, Leder K. Optimization of radiation dosing schedules for proneural glioblastoma. J Math Biol. 2016;72(5):1301–36. doi:10.1007/s00285-015-0908-x.

    Article  CAS  PubMed  Google Scholar 

  63. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105(8):R15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

(SS) is grateful for financial support provided by the Natural Science and Engineering Research Council of Canada (NSERC) through a Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farinaz Forouzannia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mathematical Models of Stem Cell Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzannia, F., Sivaloganathan, S. Cancer Stem Cells, the Tipping Point: Minority Rules?. Curr Stem Cell Rep 3, 240–247 (2017). https://doi.org/10.1007/s40778-017-0095-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0095-3

Keywords

Navigation