Skip to main content
Log in

The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells

  • Cell:Cell Interactions in Stem Cell Maintenance (D Bonnet, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Skeletal muscle satellite cells (SC) play an important role in the adaptation, repair, and maintenance of muscle. These resident muscle stem cells are regulated by a series of transcription factors known as myogenic regulator factors that orchestrate SC progression from the quiescent state through activation, proliferation, and differentiation, ultimately leading to the contribution of nuclei to muscle fibers. The purpose of this review was to provide an overview of the current state of knowledge on the role of cytokines in regulating muscle SC.

Recent Findings

Upstream effectors of the myogenic regulatory factors include growth factors and cytokines that can influence SC function through autocrine/paracrine signaling delivered via the microvasculature and general circulation, or through cell interactions with other muscle-resident cells and structures.

Summary

Recent evidence describing the relationship between capillaries and muscle SC highlights the importance of this anatomical relationship on SC function in response to physiological stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971;170(4):421–35.

    Article  CAS  PubMed  Google Scholar 

  3. Schmalbruch H, Hellhammer U. The number of satellite cells in normal human muscle. Anat Rec. 1976;185(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  4. Grounds MD. Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci. 1998;854:78–91.

    Article  CAS  PubMed  Google Scholar 

  5. Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ. MyoD(−/−) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol. 2000;224(2):122–37.

    Article  CAS  PubMed  Google Scholar 

  6. Hawke TJ. Muscle stem cells and exercise training. Exerc Sport Sci Rev. 2005;33(2):63–8.

    Article  PubMed  Google Scholar 

  7. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (Bethesda, Md: 1985). 2001;91(2):534–51.

    CAS  Google Scholar 

  8. Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development (Cambridge, England). 2011;138(17):3639–46.

    Article  CAS  PubMed Central  Google Scholar 

  9. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development (Cambridge, England). 2011;138(17):3625–37.

    Article  CAS  PubMed Central  Google Scholar 

  10. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development (Cambridge, England). 2011;138(17):3657–66.

    Article  CAS  PubMed Central  Google Scholar 

  11. • Mackey AL, Rasmussen LK, Kadi F, Schjerling P, Helmark IC, Ponsot E, et al. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J. 2016;30(6):2266–81. The study demonstrates that the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) prompted a greater increase in satellite cell content compared with placebo treatment in the regeneration of skeletal muscle in young healthy men

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beaton LJ, Tarnopolsky MA, Phillips SM. Variability in estimating eccentric contraction-induced muscle damage and inflammation in humans. Can J Appl Physiol = Revue canadienne de physiologie appliquee. 2002;27(5):516–26.

    PubMed  Google Scholar 

  13. Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA. Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve. 2006;33(2):242–53.

    Article  PubMed  Google Scholar 

  14. McKay BR, De Lisio M, Johnston AP, O'Reilly CE, Phillips SM, Tarnopolsky MA, et al. Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One. 2009;4(6):e6027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McKay BR, O'Reilly CE, Phillips SM, Tarnopolsky MA, Parise G. Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol. 2008;586(Pt 22):5549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farup J, Rahbek SK, Knudsen IS, de Paoli F, Mackey AL, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids. 2014;46(11):2503–16.

    Article  CAS  PubMed  Google Scholar 

  17. Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med. 1983;4(3):170–6.

    Article  CAS  PubMed  Google Scholar 

  18. Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013;45(2):230–7.

    Article  PubMed  Google Scholar 

  19. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJ, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015;6:283.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, et al. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One. 2014;9(10):e109739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kadi F, Thornell LE. Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol. 2000;113(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  22. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (Bethesda, Md : 1985). 2008;104(6):1736–42.

    Article  Google Scholar 

  23. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab. 2006;91(8):3024–33.

    Article  CAS  PubMed  Google Scholar 

  24. Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development (Cambridge, England). 2016;143(16):2898–906.

    Article  CAS  Google Scholar 

  25. Allen DL, Roy RR, Edgerton VR. Myonuclear domains in muscle adaptation and disease. Muscle Nerve. 1999;22(10):1350–60.

    Article  CAS  PubMed  Google Scholar 

  26. Joanisse S, McKay BR, Nederveen JP, Scribbans TD, Gurd BJ, Gillen JB, et al. Satellite cell activity, without expansion, after nonhypertrophic stimuli. Am J Physiol Regul Integr Comp Physiol. 2015;309(9):R1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  28. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol. 1998;194(1):114–28.

    Article  CAS  PubMed  Google Scholar 

  30. Miller KJ, Thaloor D, Matteson S, Pavlath GK. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol. 2000;278(1):C174–81.

    CAS  PubMed  Google Scholar 

  31. O'Reilly C, McKay B, Phillips S, Tarnopolsky M, Parise G. Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle Nerve. 2008;38(5):1434–42.

    Article  PubMed  CAS  Google Scholar 

  32. Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J Biol Chem. 2000;275(46):35942–52.

    Article  CAS  PubMed  Google Scholar 

  33. Grubb A, Joanisse S, Moore DR, Bellamy LM, Mitchell CJ, Phillips SM, et al. IGF-1 colocalizes with muscle satellite cells following acute exercise in humans. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme. 2014;39(4):514–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rotwein P, Pollock KM, Didier DK, Krivi GG. Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J Biol Chem. 1986;261(11):4828–32.

    CAS  PubMed  Google Scholar 

  35. Yang S, Alnaqeeb M, Simpson H, Goldspink G. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil. 1996;17(4):487–95.

    Article  CAS  PubMed  Google Scholar 

  36. Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 2002;522(1–3):156–60.

    Article  CAS  PubMed  Google Scholar 

  37. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    Article  CAS  PubMed  Google Scholar 

  38. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26(6):2509–21.

    Article  CAS  PubMed  Google Scholar 

  39. Snijders T, Verdijk LB, Smeets JS, McKay BR, Senden JM, Hartgens F, et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordrecht, Netherlands). 2014;36(4):9699.

    Article  Google Scholar 

  40. Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D. Effect of exercise training on skeletal muscle cytokine expression in the elderly. Brain Behav Immun. 2014;39:80–6.

    Article  CAS  PubMed  Google Scholar 

  41. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–47.

    Article  CAS  PubMed  Google Scholar 

  42. Pedersen BK. IL-6 signalling in exercise and disease. Biochem Soc Trans. 2007;35(Pt 5):1295–7.

    Article  CAS  PubMed  Google Scholar 

  43. McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol. 2013;304(8):C717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One. 2011;6(3):e17392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    Article  CAS  PubMed  Google Scholar 

  46. Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R, et al. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One. 2013;8(2):e57141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donges CE, Duffield R, Smith GC, Short MJ, Edge JA. Cytokine mRNA expression responses to resistance, aerobic, and concurrent exercise in sedentary middle-aged men. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme. 2014;39(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  48. Trenerry MK, Carey KA, Ward AC, Farnfield MM, Cameron-Smith D. Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res. 2008;11(4):717–24.

    Article  CAS  PubMed  Google Scholar 

  49. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  50. Kurosaka M, Machida S. Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif. 2013;46(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  51. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev. 2001;7:18–31.

    CAS  PubMed  Google Scholar 

  52. Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One. 2013;8(10):e78636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orsatti FL, Nahas EA, Orsatti CL, de Oliveira EP, Nahas-Neto J, da Mota GR, et al. Muscle mass gain after resistance training is inversely correlated with trunk adiposity gain in postmenopausal women. J Strength Cond Res. 2012;26(8):2130–9.

    Article  PubMed  Google Scholar 

  54. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280(17):4131–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Scheele C, Nielsen S, Kelly M, Broholm C, Nielsen AR, Taudorf S, et al. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6. PLoS One. 2012;7(6):e39657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Panagiotakos DB, Pitsavos C, Chrysohoou C, Kavouras S, Stefanadis C. The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Prev Med. 2005;40(4):432–7.

    Article  PubMed  Google Scholar 

  57. Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports. 2007;17(5):580–7.

    CAS  PubMed  Google Scholar 

  58. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol (Bethesda, Md : 1985). 2005;98(3):911–7.

    Article  CAS  Google Scholar 

  59. Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol. 2005;100(1):93–9.

    Article  PubMed  Google Scholar 

  60. Kohut ML, McCann DA, Russell DW, Konopka DN, Cunnick JE, Franke WD, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006;20(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hirata A, Masuda S, Tamura T, Kai K, Ojima K, Fukase A, et al. Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am J Pathol. 2003;163(1):203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo G, Hershko DD, Robb BW, Wray CJ, Hasselgren PO. IL-1beta stimulates IL-6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NF-kappa B. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1249–54.

    Article  CAS  PubMed  Google Scholar 

  63. Chan MH, Carey AL, Watt MJ, Febbraio MA. Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R322–7.

    Article  CAS  PubMed  Google Scholar 

  64. Quinn LS, Haugk KL, Grabstein KH. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology. 1995;136(8):3669–72.

    Article  CAS  PubMed  Google Scholar 

  65. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argiles JM. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res. 2002;280(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  66. Carbo N, Lopez-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM, et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta. 2001;1526(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  67. Maynard CL, Weaver CT. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev. 2008;226:219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy—review of a new approach. Pharmacol Rev. 2003;55(2):241–69.

    Article  CAS  PubMed  Google Scholar 

  69. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  CAS  PubMed  Google Scholar 

  70. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol (Baltimore, Md : 1950). 2012;189(7):3669–80.

    Article  CAS  Google Scholar 

  71. Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    Article  CAS  PubMed  Google Scholar 

  72. Gordon PM, Liu D, Sartor MA, IglayReger HB, Pistilli EE, Gutmann L, et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J Appl Physiol (Bethesda, Md : 1985). 2012;112(3):443–53.

    Article  CAS  Google Scholar 

  73. Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev. 2007;13:67–75.

    PubMed  Google Scholar 

  74. Horsley V, Jansen KM, Mills ST, Pavlath GK. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell. 2003;113(4):483–94.

    Article  CAS  PubMed  Google Scholar 

  75. Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res. 2006;312(7):1127–41.

    Article  CAS  PubMed  Google Scholar 

  76. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013;153(2):376–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, et al. Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2012;15(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  78. Jacquemin V, Butler-Browne GS, Furling D, Mouly V. IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci. 2007 15;120(Pt 4):670–81.

    Article  CAS  PubMed  Google Scholar 

  79. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529(Pt 1):237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Plomgaard P, Penkowa M, Pedersen BK. Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev. 2005;11:53–63.

    PubMed  Google Scholar 

  81. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cantini M, Massimino ML, Bruson A, Catani C, Dalla Libera L, Carraro U. Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun. 1994;202(3):1688–96.

    Article  CAS  PubMed  Google Scholar 

  83. Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest. 2007;132(4):1311–21.

    Article  PubMed  Google Scholar 

  84. Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, Nuutila P. Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am J Physiol Endocrinol Metab. 2001;280(6):E1015–21.

    CAS  PubMed  Google Scholar 

  85. Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. • Nederveen JP, Snijders T, Joanisse S, Wavell CG, Mitchell CJ, Johnston LM, et al. Altered muscle satellite cell activation following 16 wk of resistance training in young men. Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R85–92. The first study to demonstrate that type II muscle fiber-associated satellite cells are located at a greater distance from its nearest capillary in old compared with young adults.

    Article  PubMed  Google Scholar 

  87. Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, et al. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle. 2016.

  88. Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem. 1995;270(19):11463–71.

    Article  CAS  PubMed  Google Scholar 

  89. Sironi M, Breviario F, Proserpio P, Biondi A, Vecchi A, Van Damme J, et al. IL-1 stimulates IL-6 production in endothelial cells. J Immunol (Baltimore, Md : 1950). 1989;142(2):549–53.

    CAS  Google Scholar 

  90. Nilsen EM, Johansen FE, Jahnsen FL, Lundin KE, Scholz T, Brandtzaeg P, et al. Cytokine profiles of cultured microvascular endothelial cells from the human intestine. Gut. 1998;42(5):635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.

    PubMed  Google Scholar 

  92. Margeli A, Skenderi K, Tsironi M, Hantzi E, Matalas AL, Vrettou C, et al. Dramatic elevations of interleukin-6 and acute-phase reactants in athletes participating in the ultradistance foot race spartathlon: severe systemic inflammation and lipid and lipoprotein changes in protracted exercise. J Clin Endocrinol Metab. 2005;90(7):3914–8.

    Article  CAS  PubMed  Google Scholar 

  93. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760–4.

    Article  CAS  PubMed  Google Scholar 

  94. Eriksson M, Sartono E, Martins CL, Bale C, Garly ML, Whittle H, et al. A comparison of ex vivo cytokine production in venous and capillary blood. Clin Exp Immunol. 2007;150(3):469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA. The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J Physiol. 2003;546(Pt 1):299–305.

    Article  CAS  PubMed  Google Scholar 

  96. Rosendal L, Sogaard K, Kjaer M, Sjogaard G, Langberg H, Kristiansen J. Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J Appl Physiol (Bethesda, Md : 1985). 2005;98(2):477–81.

    Article  CAS  Google Scholar 

  97. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol. 1998;31(2):391–8.

    Article  CAS  PubMed  Google Scholar 

  98. Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K. Skeletal muscle fiber composition and capillarization in patients with chronic heart failure: relation to exercise capacity and central hemodynamics. J Card Fail. 1995;1(4):267–72.

    Article  CAS  PubMed  Google Scholar 

  99. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med. 2000;51:245–70.

    Article  CAS  PubMed  Google Scholar 

  100. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol (Bethesda, Md : 1985). 1995;78(6):2033–8.

    CAS  Google Scholar 

  101. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292(1):E151–7.

    Article  CAS  PubMed  Google Scholar 

  102. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordrecht, Netherlands). 2014;36(2):545–7.

    Article  CAS  Google Scholar 

  103. Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, et al. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. J Appl Physiol (Bethesda, Md : 1985). 2005;99(5):1872–9.

    Article  CAS  Google Scholar 

  104. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, et al. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol (Bethesda, Md : 1985). 1992;72(5):1780–6.

    CAS  Google Scholar 

  105. Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol (Bethesda, Md : 1985). 2014;116(8):998–1005.

    Article  CAS  Google Scholar 

  106. Snijders T, Nederveen JP, Joanisse S, Leenders M, Verdijk LB, van Loon LJ, et al. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men. J Cachexia Sarcopenia Muscle. 2016 04.

  107. Emslie-Smith AM, Engel AG. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol. 1990;27(4):343–56.

    Article  CAS  PubMed  Google Scholar 

  108. Joanisse S, Nederveen JP, Snijders T, McKay BR, Parise G. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology. 2017;63(1):91–100.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Gianni Parise was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Grant (1455843), JP Nederveen by a NSERC Canadian Graduate Scholarship (CGS-D). We would like to thank Jessica Blackwood for her assistance in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Parise.

Ethics declarations

Conflict of Interest

Joshua P. Nederveen, Sophie Joanisse, Tim Snijders, and Gianni Parise declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed by the authors involving human participants were approved by the Hamilton Health Sciences Integrated Research Ethics Board, and conformed to the guidelines outlined in the Declaration of Helsinki. Participants gave their informed written consent prior to inclusion in the study. For animal studies performed by the authors, ethics approval was granted by the McMaster University Animal Research Ethics Board and conformed to the standards established by the Canadian Council on Animal Care.

Additional information

This article is part of the Topical Collection on Cell:Cell Interactions in Stem Cell Maintenance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nederveen, J.P., Joanisse, S., Snijders, T. et al. The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells. Curr Stem Cell Rep 3, 192–201 (2017). https://doi.org/10.1007/s40778-017-0089-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0089-1

Keywords

Navigation