Choi JS, Mahadik BP, Harley BAC. Engineering the hematopoietic stem cell niche: frontiers in biomaterial science. Biotechnol J. 2015;10(10):1529–45. doi:10.1002/biot.201400758. This review provides a detailed overview of strategies for engineering the hematopoietic stem cell niche in vitro.
PubMed
CAS
Article
Google Scholar
Hines M, Nielsen L, Cooper-White J. The hematopoietic stem cell niche: what are we trying to replicate? J Chem Technol Biot. 2008;83(4):421–43.
CAS
Article
Google Scholar
Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Bio. 2008;9(1):11–21. doi:10.1038/Nrm2319.
CAS
Article
Google Scholar
Smith JN, Calvi LM. Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells. 2013;31(6):1044–50. doi:10.1002/stem.1370.
PubMed Central
PubMed
CAS
Article
Google Scholar
Lee-Thedieck C, Spatz JP. Artificial niches: biomimetic materials for hematopoietic stem cell culture. Macromol Rapid Commun. 2012;33(17):1432–8. doi:10.1002/marc.201200219.
PubMed
CAS
Article
Google Scholar
Lee-Thedieck C, Spatz JP. Biophysical regulation of hematopoietic stem cells. Biomater Sci. 2014;2(11):1548–61. doi:10.1039/c4bm00128a.
CAS
Article
Google Scholar
Young HE, Black AC. Adult stem cells. Anat Rec A: Discov Mol Cell Evol Biol. 2004;276A(1):75–102. doi:10.1002/ar.a.10134.
Article
Google Scholar
Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43. doi:10.1038/ncb2730
http://www.nature.com/ncb/journal/v15/n5/abs/ncb2730.html#supplementary-information.
Purton LE, Scadden DT. The hematopoietic stem cell niche. Cambridge: StemBook; 2008.
Google Scholar
Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9. doi:10.1038/nature04957.
PubMed
CAS
Article
Google Scholar
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106. doi:10.1038/Nri1779.
PubMed
CAS
Article
Google Scholar
Kopp HG, Avecilla ST, Hooper AT, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology. 2005;20:349–56. doi:10.1152/physiol.00025.2005.
PubMed
CAS
Article
Google Scholar
Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7(4):333–7.
PubMed
CAS
Article
Google Scholar
Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46. doi:10.1038/nm.3647.
PubMed Central
PubMed
CAS
Article
Google Scholar
McGrath KE, Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol. 2005;33(9):1021–8. doi:10.1016/j.exphem.2005.06.012.
PubMed
Article
Google Scholar
Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12(10):643–55. doi:10.1038/nrm3184.
PubMed Central
PubMed
CAS
Article
Google Scholar
Babovic S, Eaves CJ. Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res. 2014;329(2):185–91. doi:10.1016/j.yexcr.2014.08.005.
PubMed
CAS
Article
Google Scholar
Krause DS, Scadden DT, Preffer FI. The hematopoietic stem cell niche—home for friend and foe? Cytometry B Clin Cytom. 2013;84B(1):7–20. doi:10.1002/cyto.b.21066.
CAS
Article
Google Scholar
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. doi:10.1038/nature12984.
PubMed Central
PubMed
CAS
Article
Google Scholar
McKerrell T, Vassiliou GS. Aging as a driver of leukemogenesis. Sci Trans Med. 2015;7(306):306fs38–fs38. doi:10.1126/scitranslmed.aac4428.
Article
Google Scholar
Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13(5):376–89. doi:10.1038/nri3433.
PubMed
CAS
Article
Google Scholar
Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev of Immunol. 2003;21(1):759–806. doi:10.1146/annurev.immunol.21.120601.141007.
CAS
Article
Google Scholar
Mosaad YM. Hematopoietic stem cells: an overview. Transfus Apher Sci. 2014;51(3):68–82. doi:10.1016/j.transci.2014.10.016.
PubMed
Article
Google Scholar
Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208(3):421–8. doi:10.1084/Jem.20110132.
PubMed Central
PubMed
CAS
Article
Google Scholar
Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453(7193):306–13.
PubMed
CAS
Article
Google Scholar
Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014;35(1):32–7.
PubMed Central
PubMed
CAS
Article
Google Scholar
Silberstein LE, Lin CP. A new image of the hematopoietic stem cell vascular niche. Cell Stem Cell. 2013;13(5):514–6. doi:10.1016/j.stem.2013.10.012.
PubMed Central
PubMed
CAS
Article
Google Scholar
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr. 2014;8(6):563–77. doi:10.4161/19336918.2014.968501.
Article
Google Scholar
Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. doi:10.1038/nature12612.
PubMed Central
PubMed
CAS
Article
Google Scholar
Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–30. doi:10.1038/nature15250
http://www.nature.com/nature/journal/v526/n7571/abs/nature15250.html#supplementary-information.
Choi JS, Harley BAC. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials. 2012;33(18):4460–8. doi:10.1016/j.biomaterials.2012.03.010.
PubMed
CAS
Article
Google Scholar
Driessen RL, Johnston HM, Nilsson SK. Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol. 2003;31(12):1284–91.
PubMed
CAS
Article
Google Scholar
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.
PubMed
CAS
Article
Google Scholar
Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest. 2010;120(1):60–70. doi:10.1172/Jci41158.
PubMed Central
PubMed
CAS
Article
Google Scholar
Higuchi A, Ling Q-D, Chang Y, Hsu S-T, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev. 2013;113(5):3297–328. doi:10.1021/cr300426x.
PubMed
CAS
Article
Google Scholar
Nava MM, Raimondi MT, Pietrabissa R. Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol. 2012;2012:12. doi:10.1155/2012/797410.
Article
Google Scholar
Vunjak-Novakovic G, Scadden DT. Biomimetic platforms for human stem cell research. Cell Stem Cell. 2011;8(3):252–61. doi:10.1016/j.stem.2011.02.014.
PubMed Central
PubMed
CAS
Article
Google Scholar
Kiel MJ, Morrison SJ. Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25(6):862–4.
PubMed
CAS
Article
Google Scholar
Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.
PubMed
CAS
Article
Google Scholar
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62. doi:10.1038/nature10783.
PubMed Central
PubMed
CAS
Article
Google Scholar
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. doi:10.1038/nature09262.
PubMed Central
PubMed
CAS
Article
Google Scholar
Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A. 2008;15(2):205–19. doi:10.1089/ten.tea.2008.0131.
Article
Google Scholar
Challen GA, Boles N, Lin KK, Goodell MA. Mouse hematopoietic stem cell identification and analysis. Cytometry A J Int Soc Anal Cytol. 2009;75(1):14–24. doi:10.1002/cyto.a.20674.
Article
Google Scholar
Celiz AD, Smith JGW, Langer R, Anderson DG, Winkler DA, Barrett DA, et al. Materials for stem cell factories of the future. Nat Mater. 2014;13(6):570–9. doi:10.1038/nmat3972. This review provides a detailed overview of materials approaches for utilizing pluripotent stem cells for clinical applications. General principles discussed here could be extended to other types of stem cells as well.
PubMed
CAS
Article
Google Scholar
Kokkaliaris KD, Loeffler D, Schroeder T. Advances in tracking hematopoiesis at the single-cell level. Curr Opin Hematol. 2012;19(4):243–9. doi:10.1097/MOH.0b013e32835421de.
PubMed
Article
Google Scholar
Copley Michael R, Beer Philip A, Eaves CJ. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell. 2012;10(6):690–7. doi:10.1016/j.stem.2012.05.006.
PubMed
CAS
Article
Google Scholar
Schroeder T. Tracking hematopoiesis at the single cell level. In: Kanz L, Weisel KC, Orlic D, Fibbe WE, editors. Hematopoietic stem cells V. Annals of the New York Academy of Sciences. 2005:201–9.
Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70. doi:10.1016/j.stem.2007.08.016.
PubMed
CAS
Article
Google Scholar
Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53. doi:10.1182/blood-2008-08-078220.
PubMed Central
PubMed
CAS
Article
Google Scholar
Endele M, Etzrodt M, Schroeder T. Instruction of hematopoietic lineage choice by cytokine signaling. Exp Cell Res. 2014;329(2):207–13. doi:10.1016/j.yexcr.2014.07.011.
PubMed
CAS
Article
Google Scholar
Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS, et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A. 2012;109(2):419–24. doi:10.1073/pnas.1110865109.
PubMed Central
PubMed
CAS
Article
Google Scholar
Silva J, Smith A. Capturing pluripotency. Cell. 2008;132(4):532–6.
PubMed Central
PubMed
CAS
Article
Google Scholar
Huang S. Non-genetic heterogeneity of cells in development: more than just noise. Development. 2009;136(23):3853–62. doi:10.1242/dev.035139.
PubMed Central
PubMed
CAS
Article
Google Scholar
Prowse ABJ, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6(1):1–12. doi:10.1016/j.scr.2010.09.005.
PubMed
CAS
Article
Google Scholar
Watt FM, Huck WTS. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73. doi:10.1038/nrm3620. This review extensively confers the role of stem cell-matrix interactions in stem cell fate regulation.
PubMed
CAS
Article
Google Scholar
Baker BM, Chen CS. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–24. doi:10.1242/jcs.079509.
PubMed Central
PubMed
CAS
Article
Google Scholar
Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta Gen Subj. 2011;1810(3):350–60. doi:10.1016/j.bbagen.2010.04.006.
CAS
Article
Google Scholar
Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13(6):558–69. doi:10.1038/nmat3980. This review provides a thorough overview of stem cell fate regulation via integrin-mediated cell adhesion to nanotopographical features on materials surfaces.
PubMed
CAS
Article
Google Scholar
Franke K, Pompe T, Bornhauser M, Werner C. Engineered matrix coatings to modulate the adhesion of CD133(+) human hematopoietic progenitor cells. Biomaterials. 2007;28(5):836–43. doi:10.1016/j.biomaterials.2006.09.031.
PubMed
CAS
Article
Google Scholar
Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison-Smith LB, et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol. 2010;28(10):1123–8.
PubMed
CAS
Article
Google Scholar
Cuchiara ML, Coşkun S, Banda OA, Horter KL, Hirschi KK, West JL. Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture. Biotechnol Bioeng. 2015. doi:10.1002/bit.25848.
PubMed
Google Scholar
Taqvi S, Dixit L, Roy K. Biomaterial-based notch signaling for the differentiation of hematopoietic stem cells into T cells. J Biomed Mater Res A. 2006;79A(3):689–97. doi:10.1002/jbm.a.30916.
CAS
Article
Google Scholar
Lee-Thedieck C, Rauch N, Fiammengo R, Klein G, Spatz JP. Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. J Cell Sci. 2012;125(16):3765–75. doi:10.1242/Jcs.095596.
PubMed
CAS
Article
Google Scholar
Kurth I, Franke K, Pompe T, Bornhauser M, Werner C. Hematopoietic stem and progenitor cells in adhesive microcavities. Integr Biol. 2009;1(5–6):427–34. doi:10.1039/b903711j.
CAS
Article
Google Scholar
Kurth I, Franke K, Pompe T, Bornhauser M, Werner C. Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromol Biosci. 2011;11(6):739–47. doi:10.1002/mabi.201000432.
PubMed
CAS
Article
Google Scholar
Muth CA, Steinl C, Klein G, Lee-Thedieck C. Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. Plos One. 2013;8(2). doi: 10.1371/journal.pone.0054778.
Altrock E, Muth CA, Klein G, Spatz JP, Lee-Thedieck C. The significance of integrin ligand nanopatterning on lipid raft clustering in hematopoietic stem cells. Biomaterials. 2012;33(11):3107–18. doi:10.1016/j.biomaterials.2012.01.002.
PubMed
CAS
Article
Google Scholar
Calabro NE, Kristofik NJ, Kyriakides TR. Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta Gen Subj. 2014;1840(8):2396–402. doi:10.1016/j.bbagen.2014.01.013.
CAS
Article
Google Scholar
Zandstra PW, Lauffenburger DA, Eaves CJ. A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood. 2000;96(4):1215–22.
PubMed
CAS
Google Scholar
Csaszar E, Kirouac DC, Yu M, Wang W, Qiao W, Cooke MP, et al. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell. 2012;10(2):218–29. doi:10.1016/j.stem.2012.01.003.
PubMed
CAS
Article
Google Scholar
Doran MR, Markway BD, Aird IA, Rowlands AS, George PA, Nielsen LK, et al. Surface-bound stem cell factor and the promotion of hematopoietic cell expansion. Biomaterials. 2009;30(25):4047–52. doi:10.1016/j.biomaterials.2009.04.043.
PubMed
CAS
Article
Google Scholar
Kishimoto S, Nakamura S, Hattori H, Oonuma F, Kanatani Y, Tanaka Y, et al. Human stem cell factor (SCF) is a heparin-binding cytokine. J Biochem. 2009;145(3):275–8. doi:10.1093/jb/mvn169.
PubMed
CAS
Article
Google Scholar
Mahadik BP, Haba SP, Skertich LJ, Harley BAC. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials. 2015;67:297–307. doi:10.1016/j.biomaterials.2015.07.042.
PubMed
CAS
Article
Google Scholar
Cuchiara ML, Horter KL, Banda OA, West JL. Covalent immobilization of stem cell factor and stromal derived factor 1alpha for in vitro culture of hematopoietic progenitor cells. Acta Biomater. 2013. doi:10.1016/j.actbio.2013.08.012.
PubMed Central
PubMed
Google Scholar
Kishimoto S, Nakamura S, Hattori H, Oonuma F, Kanatani Y, Tanaka Y, et al. Cytokine-immobilized microparticle-coated plates for culturing hematopoietic progenitor cells. J Control Release Off J Control Release Soc. 2009;133(3):185–90. doi:10.1016/j.jconrel.2008.10.005.
CAS
Article
Google Scholar
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. Hematopoietic cytokines can instruct lineage choice. Science. 2009;325(5937):217–8. doi:10.1126/science.1171461.
PubMed
CAS
Article
Google Scholar
Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Molecular Systems Biology. 2009;5. doi:10.1038/msb.2009.49.
Csaszar E, Chen K, Caldwell J, Chan W, Zandstra PW. Real-time monitoring and control of soluble signaling factors enables enhanced progenitor cell outputs from human cord blood stem cell cultures. Biotechnol Bioeng. 2014;111(6):1258–64. doi:10.1002/bit.25163.
PubMed Central
PubMed
CAS
Article
Google Scholar
Csaszar E, Wang W, Usenko T, Qiao W, Delaney C, Bernstein ID, et al. Blood stem cell fate regulation by Delta-1-mediated rewiring of IL-6 paracrine signaling. Blood. 2014;123(5):650–8. doi:10.1182/blood-2013-08-520445.
PubMed Central
PubMed
CAS
Article
Google Scholar
Prewitz MC, Stißel A, Friedrichs J, Träber N, Vogler S, Bornhäuser M, et al. Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials. 2015;73:60–9. doi:10.1016/j.biomaterials.2015.09.014.
PubMed
CAS
Article
Google Scholar
Zeiger AS, Loe FC, Li R, Raghunath M, Van Vliet KJ. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. Plos ONE. 2012;7(5):e37904. doi:10.1371/journal.pone.0037904.
PubMed Central
PubMed
CAS
Article
Google Scholar
F-W Greiner J, Kaltschmidt B, Kaltschmidt C, Widera D. Going 3D—cell culture approaches for stem cell research and therapy. Curr Tissue Eng. 2013;2(1):8–19.
Article
Google Scholar
Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun. 2014;5. doi:10.1038/ncomms5324.
Di Maggio N, Piccinini E, Jaworski M, Trumpp A, Wendt DJ, Martin I. Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials. 2011;32(2):321–9. doi:10.1016/j.biomaterials.2010.09.041.
PubMed
Article
CAS
Google Scholar
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124–8. doi:10.1126/science.1214804.
PubMed
CAS
Article
Google Scholar
Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials. 2009;30(3):344–53. doi:10.1016/j.biomaterials.2008.09.037.
PubMed
CAS
Article
Google Scholar
Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. AdvDrug Deliv Rev. 2012;64(Supplement):223–36. doi:10.1016/j.addr.2012.09.009.
Article
Google Scholar
Kloxin AM, Tibbitt MW, Anseth KS. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc. 2010;5(12):1867–87. doi:10.1038/nprot.2010.139.
PubMed Central
PubMed
CAS
Article
Google Scholar
Xing J, Liu L, Song X, Zhao Y, Zhang L, Dong X, et al. 3D hydrogels with high resolution fabricated by two-photon polymerization with sensitive water soluble initiators. J Mater Chem B. 2015;3(43):8486–91. doi:10.1039/c5tb01545f.
CAS
Article
Google Scholar
Lewis KJR, Anseth KS. Hydrogel scaffolds to study cell biology in four dimensions. MRS Bull. 2013;38(03):260–8. doi:10.1557/mrs.2013.54.
PubMed Central
PubMed
CAS
Article
Google Scholar
Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules. 2013;46(7):2785–92. doi:10.1021/ma302522x.
PubMed Central
CAS
Article
Google Scholar
Ferreira MS, Jahnen-Dechent W, Labude N, Bovi M, Hieronymus T, Zenke M, et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials. 2012;33(29):6987–97. doi:10.1016/j.biomaterials.2012.06.029.
PubMed
Article
CAS
Google Scholar
Raic A, Rodling L, Kalbacher H, Lee-Thedieck C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials. 2014;35(3):929–40. doi:10.1016/j.biomaterials.2013.10.038.
PubMed
CAS
Article
Google Scholar
Tan J, Liu T, Hou L, Meng W, Wang Y, Zhi W, et al. Maintenance and expansion of hematopoietic stem/progenitor cells in biomimetic osteoblast niche. Cytotechnology. 2010;62(5):439–48. doi:10.1007/s10616-010-9297-6.
PubMed Central
PubMed
Article
Google Scholar
Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng A. 2011;17(13–14):1713–23. doi:10.1089/ten.tea.2010.0666.
CAS
Article
Google Scholar
Hudalla GA, Koepsel JT, Murphy WL. Surfaces that sequester serum-borne heparin amplify growth factor activity. Adv Mater. 2011;23(45):5415–8. doi:10.1002/adma.201103046.
PubMed Central
PubMed
CAS
Article
Google Scholar
Belair DG, Le NN, Murphy WL. Design of growth factor sequestering biomaterials. Chem Commun. 2014;50(99):15651–68. doi:10.1039/c4cc04317k.
CAS
Article
Google Scholar
Hudalla GA, Kouris NA, Koepsel JT, Ogle BM, Murphy WL. Harnessing endogenous growth factor activity modulates stem cell behavior. Integr Biol. 2011;3(8):832–42. doi:10.1039/c1ib00021g.
CAS
Article
Google Scholar
Lim JJ, Temenoff JS. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. Biomaterials. 2013;34(21):5007–18. doi:10.1016/j.biomaterials.2013.03.037.
PubMed Central
PubMed
CAS
Article
Google Scholar
Sakiyama-Elbert SE, Hubbell JA. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release. 2000;69(1):149–58. doi:10.1016/S0168-3659(00)00296-0.
PubMed
CAS
Article
Google Scholar
Hortensius RA, Becraft JR, Pack DW, Harley BAC. The effect of glycosaminoglycan content on polyethylenimine-based gene delivery within three-dimensional collagen-GAG scaffolds. Biomater Sci. 2015;3(4):645–54. doi:10.1039/c5bm00033e.
PubMed Central
PubMed
CAS
Article
Google Scholar
Sugimura R. Bioengineering hematopoietic stem cell niche toward regenerative medicine. Adv Drug Deliv Rev. 2015. doi:10.1016/j.addr.2015.10.010.
PubMed
Google Scholar
Whisler JA, Chen MB, Kamm RD. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng C Methods. 2014;20(7):543–52. doi:10.1089/ten.TEC.2013.0370.
CAS
Article
Google Scholar
Moya ML, George SC. Integrating organ-specific function with the microcirculation. Curr Opin Chem Eng. 2014;3:103–11. doi:10.1016/j.coche.2013.12.004.
PubMed Central
PubMed
Article
Google Scholar
Mahadik BP, Wheeler TD, Skertich LJ, Kenis PJ, Harley BA. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv Healthcare Mater. 2014;3(3):449–58. doi:10.1002/adhm.201300263.
CAS
Article
Google Scholar
Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods. 2011;8(7):581–6. doi:10.1038/nmeth.1614.
PubMed
CAS
Article
Google Scholar
Schroeder T. Hematopoietic stem cell heterogeneity: subtypes not unpredictable behavior. Cell Stem Cell. 2010;6(3):203–7. doi:10.1016/j.stem.2010.02.006.
PubMed
CAS
Article
Google Scholar
Perry JM, Li L. Functional assays for hematopoietic stem cell self-renewal. In: Ding S, editor. Cellular programming and reprogramming: methods and protocols. Methods Mol Biol. 2010:45–54.
Frisz JF, Choi JS, Wilson RL, Harley BAC, Kraft ML. Identifying differentiation stage of individual primary hematopoietic cells from mouse bone marrow by multivariate analysis of TOF-secondary ion mass spectrometry data. Anal Chem. 2012;84(10):4307–13. doi:10.1021/ac203329j.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ilin Y, Kraft ML. Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Curr Opin Biotechnol. 2015;31:108–16. doi:10.1016/j.copbio.2014.10.011.
PubMed
CAS
Article
Google Scholar
Chen W, Long KD, Lu M, Chaudhery V, Yu H, Choi JS, et al. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst. 2013;138(20):5886–94. doi:10.1039/c3an01541f.
PubMed
CAS
Article
Google Scholar
Chen W, Long KD, Yu H, Tan Y, Choi JS, Harley BAC, et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy. Analyst. 2014;139(22):5954–63. doi:10.1039/C4AN01508H.
PubMed Central
PubMed
CAS
Article
Google Scholar
Chen W, Long KD, Kurniawan J, Hung M, Yu H, Harley BA, et al. Planar photonic crystal biosensor for quantitative label-free cell attachment microscopy. Adv Optic Mater. 2015;3(11):1623–32. doi:10.1002/adom.201500260.
CAS
Article
Google Scholar