Skip to main content
Log in

Geoneutrinos and geoscience: an intriguing joint-venture

La Rivista del Nuovo Cimento Aims and scope

Cite this article


The review is conceived to provide a useful toolbox to understand present geoneutrino results with a view to shed light on Earth’s energetics and composition. The status of the geoneutrino field is presented starting from the comprehension of their production, propagation, and detection, and going on with the experimental and technological features of the Borexino and KamLAND ongoing experiments. The current understanding of the energetical, geophysical and geochemical traits of our planet is examined in a critical analysis of the currently available models. By combining theoretical models and experimental results, the mantle geoneutrino signal extracted from the results of the two experiments demonstrates the effectiveness in investigating deep earth radioactivity through geoneutrinos from different sites. The obtained results are discussed and framed in the puzzle of the diverse classes of formulated Bulk Silicate Earth models, analyzing their implications on planetary heat budget and composition. As final remarks, we turn our gaze to the prospects in the field of geoneutrinos presenting the expectations of experiments envisaged for the next decade and the engaging technological challenges foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

taken from cameras mounted inside the SSS

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

taken from the preferred interval estimated by [107] (Sect. 6.2.2). The extremes of the range of C are obtained by Q + 1σ minus the lower value of H range (i.e., 47 + 2 − 10 = 39 TW) and Q 1σ minus the upper value of H range (i.e., 47 – 2 − 37  = 8 TW). We set CLS = 0, since the secular cooling of the lithosphere can be considered negligible (Sect. 6.2.2)

Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

available at The locations of current and future liquid scintillator experiments are superimposed with different marker symbols

Fig. 35
Fig. 36


  1. Geoneutrinos emitters include 40K, 87Rb, 113Cd, 115In, 138La, 176Lu, 187Re and the elements belonging to the decay chains of 232Th, 235U and 238U. Because of their longer half-lives or higher abundances, the most important emitters in terms of luminosity are 40K and the ones belonging to 232Th and 238U decay chains, with only the latter two observable with present detection techniques. Differently from the other mentioned isotopes (which only undergo β decays), 40K can produce both neutrinos and antineutrinos (Sect. 11.6). However, the detection of neutrinos is prevented by their low energy and the overwhelming solar neutrino flux which is nearly three orders of magnitude higher.

  2. The condensation temperatures are the temperatures at which 50% of the element will be in the form of a solid (rock) under a pressure of 10−4 bar.

  3. Even in these meteorites volatile elements have been depleted to various degrees, including the six most abundant elements (H, He, C, N, O and Ne) and lithium.

  4. Note that the NFC defined by Wipperfurth et al. 2020 is not coincident with the NFC defined by Huang et al. 2013 (Fig. 26).

  5. The 3D geophysical model is available at

  6. The possibility of a layer enriched in HPEs in the upper part of the mantle is disproved by several geochemical arguments and observations. The main idea is that if processes would have led to an enriched upper layer, extensions of those physical and chemical processes would have carried the lithophile elements into the lithosphere.

  7. The 3D geophysical model is available at + /

  8. The 3D geophysical model is available at


\({a(\mathrm{K})}_{X}\) :

Abundance of potassium in the reservoir X (ng g1 or mg g1)

\({a(\mathrm{Th})}_{X}\) :

Abundance of uranium in the reservoir X (ng g1 or mg g1)

\({a(\mathrm{U})}_{X}\) :

Abundance of thorium in the reservoir X (ng g1 or mg g1)


Surface area—continents (106 km2)


Surface area—oceans (106 km2)


Arevalo 2010


Bulk crust


Bulk silicate Earth

c 0 :

Velocity of light vacuum (299,792,458 m s1)



C :

Secular cooling—Earth (TW)

C X :

Secular cooling of the reservoir X (TW)


Continental crust


China Jinping Underground Laboratory


Carbon nitrogen oxygen


Central tile (NFC of Borexino)


Counting test facility


Core mantle boundary


Delayed coincidence


Depleted mantle

E H :

Energy of heat production (MeV)

\({E}_{\overline{\nu }}\) :

Energy of antineutrino (MeV)

E max :

Maximal energy of the emitted antineutrino (MeV)


Enriched mantle


Fiducial volume


Far field crust

f C :

Core-mantle differentiation factor

f D :

Enriching factor due to volatilization

h :

Specific isotopic heat production (W kg1)


Elemental specific heat production (W kg1)

H :

Radiogenic heat—bulk Earth (TW)

H X :

Radiogenic heat in the reservoir X (TW)


Huang et al. 2013


Heat producing element


Inner balloon of KamLAND detector


Inverse beta decay


Inner core


Inner detector


Inner vessel


Javoy et al. 2010


Jackson and Jellinek 2013


Javoy and Kaminski 2014


Japan Sea


Jiangmen Underground Neutrino Observatory

L :

Distance travelled by the antineutrino from its emission point (m)


Lithosphere–asthenosphere boundary


Large low velocity province


Lower crust


Lyubetskaya and Korenaga 2007


Lower mantle


Laboratori Nazionali del Gran Sasso





M X :

Mass of the BSE (kg)

M C :

Mass of the core (kg)

\({M(\mathrm{K})}_{X}\) :

Mass of potassium in the reservoir X (kg)

\({M(\mathrm{Th})}_{X}\) :

Mass of uranium in the reservoir X (kg)

\({M(\mathrm{U})}_{X}\) :

Mass of thorium in the reservoir X (kg)

\({M}_{V}\) :

Mass of the volatilized material (kg)

m p :

Mass of parent nuclide (kg)

m d :

Mass of daughter nuclide (kg)


Middle crust


Multi-layer perceptron


Mohorovicic discontinuity


Mid ocean ridge basalts


McDonough and Sun 1995

N :

Number of antineutrinos emitted per decay of the parent nucleus (decay1)

\({N}_{p}\) :

Number of proton targets available in the detector

\({N}_{\mathrm{U}}\) :

Number of U geoneutrino events

\({N}_{\mathrm{Th}}\) :

Number of Th geoneutrino events

\({N}_{\mathrm{geo}}\) :

Number of total geoneutrino events


Near field crust


Ocean bottom detector


Outer core


Outer vessel


Outer detector


Ocean island basalts


O’Neill and Palme 2008



P ee :

Electron antineutrino survival probability




Probability density function


Palme and O’Neill 2007


Palme and O’Neill 2014


Photomultiplier tube

Q :

Integrated terrestrial surface heat power (TW)

q CT :

Mean heat flux—continents (mWm2)

q OC :

Mean heat flux—oceans (mWm2)

Q CT :

Heat power—continents (TW)


Heat power—oceans (TW)


Refractory lithophile elements


Rest of region (NFC of Borexino)


Sedimentary layer

SNO +:

Sudbury neutrino observatory


Stainless steel sphere

S X(U + Th):

Geoneutrino signal from U and Th in the reservoir X (TNU)

\(S{p}_{i}(i, {E}_{\overline{\nu }})\) :

Energy spectra of the produced geoneutrino of the i-th HPE

T :

Exposure time

T 1/2 :

Half life (Myr)

T C :

Condensation temperature (K)


Turcotte 2002


Turcotte 2004


Terrestrial neutrino unit

U R :

Urey ratio


Upper crust


Ultra low velocity zone


Upper mantle

v p :

Seismic velocity of primary compressional waves (km s1)

v s :

Seismic velocity of secondary shear waves (km s1)

V X :

Seismic velocity in the reservoir X (km s1)


Wang et al. 2018


Wipperfurth et al. 2020 based on Crust 2.0


Wipperfurth et al. 2020 based on Crust 1.0


Wipperfurth et al. 2020 based on Litho 1.0

X iso :

Natural isotopic abundance

\(\lambda \) :

Decay constant (s1)

\({\epsilon }_{\overline{\nu }}\) :

Antineutrino production rates for unit mass of the isotope (kg−1 s−1)

\({\epsilon {{\prime}}}_{\overline{\nu }}\) :

Antineutrino production rates for unit mass at natural isotopic abundance (kg1 s1)

\({\Phi }_{i}\) :

Unoscillated geoneutrino flux of the i-th HPE (cm2 s1)

\({\theta }_{12},{\theta }_{13}\) and \({\theta }_{23}\) :

Mixing angles between neutrinos eigenstates (rad)

\(\delta {m}^{2}\) and \(\Delta {m}^{2}\) :

Square mass differences between neutrinos eigenstates (MeV)

\(\eta \) :

Detector efficiency

\(\sigma \) :

IBD cross section (cm2)

ρ :

Mass density (g cm3 or kg m3)

\({\overline{\nu }}_{e}\) :

Electron-flavoured antineutrino


  1. T. Araki et al., Nature 436, 499 (2005)

    Article  ADS  Google Scholar 

  2. G. Bellini et al., Phys. Lett. B 687, 299 (2010)

    Article  ADS  Google Scholar 

  3. S. Enomoto, E. Ohtani, K. Inoue, A. Suzuki, Earth Planet. Sci. Lett. 258, 147 (2007)

    Article  ADS  Google Scholar 

  4. A. Gando et al., Nat. Geosci. 4, 647 (2011)

    Article  ADS  Google Scholar 

  5. A. Gando et al., Phys. Rev. D 88, 033001 (2013)

    Article  ADS  Google Scholar 

  6. H. Watanabe, in International workshop: neutrino research and thermal evolution of the Earth, 25—27 October—Sendai (Japan), 2016.

  7. H. Watanabe, in Neutrino Geoscience 2019, 21—23 October—Prague (Czech Republic), 2019.

  8. G. Bellini et al., Phys. Lett. B 722, 295 (2013)

    Article  ADS  Google Scholar 

  9. M. Agostini et al., Phys. Rev. D 92, 031101 (2015)

    Article  ADS  Google Scholar 

  10. M. Agostini et al., Phys. Rev. D 101, 062001 (2020)

    Article  ADS  Google Scholar 

  11. G. Gamow, Personal communication to F. Reines (1953)

  12. E. Browne, J.K. Tuli, Nucl. Data Sheets 127, 191 (2015)

    Article  ADS  Google Scholar 

  13. E. Browne, Nucl. Data Sheets 107, 2579 (2006)

    Article  ADS  Google Scholar 

  14. J. Chen, Nucl. Data Sheets 140, 1 (2017)

    Article  ADS  Google Scholar 

  15. G. Fiorentini, M. Lissia, F. Mantovani, Phys. Rep. 453, 117 (2007)

    Article  ADS  Google Scholar 

  16. S. T. Dye, Rev. Geophys. (2012).

  17. W.F. McDonough, O. Šrámek, S.A. Wipperfurth, Geochem. Geophys. Geosyst. 21, e2019GC008865 (2020)

    Article  ADS  Google Scholar 

  18. F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 102, 48–72 (2018)

    Article  ADS  Google Scholar 

  19. Bezerra, T. J. C., M. Bongrand, A. Cabrera, E. Chauveau, M. Grassi, P. Loaiza, L. Manzanillas, C. Marquet, M. Obolensky, M. S. Pravikoff. Proc. Sci. (2019).

  20. G. Fiorentini, G. Fogli, E. Lisi, F. Mantovani, A. Rotunno, Phys. Rev. D 86, 033004 (2012)

    Article  ADS  Google Scholar 

  21. S. Enomoto. Geoneutrino Spectrum and Luminosity (2006).

  22. F. Mantovani, L. Carmignani, G. Fiorentini, M. Lissia, Phys. Rev. D 69, 013001 (2004)

    Article  ADS  Google Scholar 

  23. G.L. Fogli, E. Lisi, A. Palazzo, A.M. Rotunno, Earth Moon Planets 99, 111 (2006)

    Article  ADS  Google Scholar 

  24. S.T. Dye, Earth Planet. Sci. Lett. 297, 1 (2010)

    Article  ADS  Google Scholar 

  25. Y. Huang, V. Chubakov, F. Mantovani, R.L. Rudnick, W.F. McDonough, Geochem. Geophys. Geosyst. 14, 2023 (2013)

    ADS  Google Scholar 

  26. O. Šrámek, B. Roskovec, S.A. Wipperfurth, Y. Xi, W.F. McDonough, Sci. Rep. 6, 33034 (2016)

    Article  ADS  Google Scholar 

  27. K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  28. T. Araki et al., Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  Google Scholar 

  29. A. Gando et al., Phys. Rev. C 85, 045504 (2012)

    Article  ADS  Google Scholar 

  30. K. Hirata et al., Phys. Rev. D 38, 448 (1988)

    Article  ADS  Google Scholar 

  31. B. Berger et al., J. Instrum. 4, P04017 (2009)

    Article  Google Scholar 

  32. T.A. Mueller et al., Phys. Rev. C 83, 054615 (2011)

    Article  ADS  Google Scholar 

  33. P. Huber, Phys. Rev. C 84, 024617 (2011)

    Article  ADS  Google Scholar 

  34. K. Schreckenbach, G. Colvin, W. Gelletly, F. Von Feilitzsch, Phys. Lett. B 160, 325 (1985)

    Article  ADS  Google Scholar 

  35. A. Hahn, K. Schreckenbach, W. Gelletly, F. Von Feilitzsch, G. Colvin, B. Krusche, Phys. Lett. B 218, 365 (1989)

    Article  ADS  Google Scholar 

  36. F.P. An et al., Chin. Phys. C 41, 013002 (2017)

    Article  ADS  Google Scholar 

  37. Y. Declais et al., Phys. Lett. B 338, 383 (1994)

    Article  ADS  Google Scholar 

  38. W.F. McDonough, S.S. Sun, Chem. Geol. 120, 223 (1995)

    Article  ADS  Google Scholar 

  39. G. Alimonti et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 406, 411 (1998)

    Article  ADS  Google Scholar 

  40. J. Benziger et al., Nucl. Instrum. Methods Phys. Res. Sect. A 587, 277 (2008)

    Article  ADS  Google Scholar 

  41. J.B. Benziger, M. Johnson, F. Calaprice, M. Chen, N. Darnton, R. Loeser, R. Vogelaar, Nucl. Instrum. Methods Phys. Res. Sect. A 417, 278 (1998)

    Article  ADS  Google Scholar 

  42. C. Arpesella et al., Astropart. Phys. 18, 1 (2002)

    Article  ADS  Google Scholar 

  43. M. Agostini et al., Nature 562, 505 (2018)

    Article  ADS  Google Scholar 

  44. M. Agostini et al., Nature 587, 577 (2020)

    Article  Google Scholar 

  45. G. Alimonti et al., Nucl. Instrum. Methods Phys. Res. Sect. A 600, 568 (2009)

    Article  ADS  Google Scholar 

  46. F. Elisei et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 400, 53 (1997)

    Article  ADS  Google Scholar 

  47. G. Alimonti et al., Nucl. Instrum. Methods Phys. Res. Sect. A 440, 360 (2000)

    Article  ADS  Google Scholar 

  48. G. Ranucci, M. Campanella, R. Cavaletti, D. Giugni, S. Magni, A. Preda, I. Manno, P. Ullucci, S. Schönert, Nucl. Instrum. Methods Phys. Res. Sect. A 333, 553 (1993)

    Article  ADS  Google Scholar 

  49. H. Back et al., J. Instrum. 7, P10018 (2012)

    Article  Google Scholar 

  50. G. Bellini et al., J. Cosmol. Astropart. Phys. 2012, 015 (2012)

    Article  Google Scholar 

  51. M. Agostini et al., Astropart. Phys. 92, 21 (2017)

    Article  ADS  Google Scholar 

  52. H. de Kerret et al., J. High Energy Phys. 2018, 1 (2018)

    Google Scholar 

  53. I.A.E.A. IAEA-PRIS, in IAEA—STI/PUB/1671. (2019).

  54. M. Baldoncini, I. Callegari, G. Fiorentini, F. Mantovani, B. Ricci, V. Strati, G. Xhixha, Phys. Rev. D 91, 065002 (2015)

    Article  ADS  Google Scholar 

  55. F.P. An et al., Phys. Rev. Lett. 116, 061801 (2016)

    Article  ADS  Google Scholar 

  56. Y. Abe et al., J. High Energy Phys. 2014, 86 (2014)

    Article  Google Scholar 

  57. M. Honda, M.S. Athar, T. Kajita, K. Kasahara, S. Midorikawa, Phys. Rev. D 92, 023004 (2015)

    Article  ADS  Google Scholar 

  58. A.J. Koning, S. Hilaire, M. Duijvestijn, in International conference on nuclear data for science and technology (EDP sciences, 2007), pp. 211

  59. F. Birch, J. Geophys. Res. 57, 227 (1952)

    Article  ADS  Google Scholar 

  60. A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981)

    Article  ADS  Google Scholar 

  61. T.G. Masters, P.M. Shearer, in Global earth physics a handbook of physical constants, ed. by T.J. Ahrens (AGU reference shelf Series No. 1, 1995), pp. 88

  62. P.M. Shearer, T.G. Masters, Global mapping of topography on the 660-km discontinuity. Nature 355(6363), 791–796.

  63. C.F. Yoder, Astrometric and geodetic properties of earth and the solar system. in Global Earth Physics: A Handbook of Physical Constants, ed. by J. Thomas Ahrens, 1–31. AGU reference shelf Series No. 1 (1995)

  64. T. Yoshizaki, R.D. Ash, T. Yokoyama, M.D. Lipella, W.F. McDonough, arXiv preprint. (2018).

  65. I.H. Campbell, H.S.C. O’Neill, Nature 483, 553 (2012)

    Article  ADS  Google Scholar 

  66. W.F. McDonough, in Treatise on geochemistry (second edition). ed. by H.D. Holland, K.K. Turekian (Elsevier, Oxford, 2014), p. 559

    Chapter  Google Scholar 

  67. H.S.C. O’Neill, H. Palme, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 4205 (2008)

    Article  ADS  Google Scholar 

  68. T. Yoshizaki, W. McDonough, R. Ash, in Lunar and planetary science conference proceedings, (2018), p. 1436

  69. D. Alfè, M.J. Gillan, G.D. Price, Contemp. Phys. 48, 63 (2007)

    Article  ADS  Google Scholar 

  70. W.F. McDonough, in Deep Earth, (2016), p. 143

  71. K. Watanabe, E. Ohtani, S. Kamada, T. Sakamaki, M. Miyahara, Y. Ito, Phys. Earth Planet. Inter. 237, 65 (2014)

    Article  ADS  Google Scholar 

  72. W. F. McDonough, The composition of the lower mantle and core. Deep Earth. 143, 59 (2016)

  73. V.R. Murthy, W. van Westrenen, Y. Fei, Nature 423, 163 (2003)

    Article  ADS  Google Scholar 

  74. K.K.M. Lee, G. Steinle-Neumann, R. Jeanloz. Ab-Initio high-pressure alloying of iron and potassium: implications for the Earth’s core. Geophys. Res. Lett. (2004).

  75. M. Humayun, R.N. Clayton, Geochim. Cosmochim. Acta 59, 2131 (1995)

    Article  ADS  Google Scholar 

  76. A. Corgne, S. Keshav, Y. Fei, W.F. McDonough, Earth Planet. Sci. Lett. 256, 567 (2007)

    Article  ADS  Google Scholar 

  77. D.L. Anderson, New Theory of the Earth (Cambridge University Press, 2007)

    Book  Google Scholar 

  78. D. Bercovici, in Treatise on geophysics, (2015), p. 1

  79. Y. Fukao, M. Obayashi, J. Geophys. Res. Solid Earth 118, 5920 (2013)

    Article  ADS  Google Scholar 

  80. D. Bercovici, Mantle dynamics: an introduction and overview. Treatise Geophys. 1, 22 (2015)

  81. R.D. van der Hilst, S. Widiyantoro, E.R. Engdahl, Nature 386, 578 (1997)

    Article  ADS  Google Scholar 

  82. S.P. Grand, R.D. Van der Hilst, S. Widiyantoro. High resolution global tomography: a snapshot of convection in the earth. Geol. Soc. Am. Today 7(4) (1997)

    Article  ADS  Google Scholar 

  83. J.W. Hernlund, C. Thomas, P.J. Tackley, Nature 434, 882 (2005)

    Article  ADS  Google Scholar 

  84. G. Masters, G. Laske, H. Bolton, A. Dziewonski. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Earth’s Deep Inter. Miner. Phys. Tomogr. At. Glob. Scale. 117, 63–87 (2000)

  85. M. Ishii, J. Tromp, Science 285, 1231 (1999)

    Article  Google Scholar 

  86. B. Kennett, A. Gorbatov, Phys. Earth Planet. Inter. 146, 87 (2004)

    Article  ADS  Google Scholar 

  87. S. Ni, E. Tan, M. Gurnis, D. Helmberger, Science 296, 1850 (2002)

    Article  ADS  Google Scholar 

  88. E.J. Garnero, A.K. McNamara, Science 320, 626 (2008)

    Article  ADS  Google Scholar 

  89. J.W. Hernlund, C. Houser, Earth Planet. Sci. Lett. 265, 423 (2008)

    Article  ADS  Google Scholar 

  90. H. Bolton, G. Masters, J. Geophys. Res. Solid Earth 106, 13527 (2001)

    Article  Google Scholar 

  91. R. L. Saltzer, E. Stutzmann, and R. D. van der Hilst, Journal of Geophysical Research: Solid Earth 109 (2004).

  92. D.R. Davies, S. Goes, J.H. Davies, B. Schuberth, H.-P. Bunge, J. Ritsema, Earth Planet. Sci. Lett. 353, 253 (2012)

    Article  ADS  Google Scholar 

  93. A. Davaille, F. Girard, M. Le Bars, Earth Planet. Sci. Lett. 203, 621 (2002)

    Article  ADS  Google Scholar 

  94. C. Farnetani, Geophys. Res. Lett. 24, 1583 (1997)

    Article  ADS  Google Scholar 

  95. N. Coltice, Y. Ricard, Earth Planet. Sci. Lett. 174, 125 (1999)

    Article  ADS  Google Scholar 

  96. P.E. van Keken, E.H. Hauri, C.J. Ballentine, Annu. Rev. Earth Planet. Sci. 30, 493 (2002)

    Article  ADS  Google Scholar 

  97. S.R. Hart, A. Zindler, Chem. Geol. 57, 247 (1986)

    Article  ADS  Google Scholar 

  98. H. Palme, H.S.C. O’Neill, in The mantle and core, vol 2 treatise of geochemistry. ed. by R.W. Carlson (Elsevier, Oxford, 2003), p. 1

    Google Scholar 

  99. C.J. Allègre, A. Hofmann, K. O’Nions, Geophys. Res. Lett. 23, 3555 (1996)

    Article  ADS  Google Scholar 

  100. D.L. Anderson, Int. Geol. Rev. 44, 97 (2002)

    Article  Google Scholar 

  101. M. Javoy et al., Earth Planet. Sci. Lett. 293, 259 (2010)

    Article  ADS  Google Scholar 

  102. M. Murakami, Y. Ohishi, N. Hirao, K. Hirose, Nature 485, 90 (2012)

    Article  ADS  Google Scholar 

  103. S. Labrosse, J.W. Hernlund, N. Coltice, Nature 450, 866 (2007)

    Article  ADS  Google Scholar 

  104. C.-T.A. Lee, Q.-Z. Yin, A. Lenardic, A. Agranier, C.J. O’Neill, N. Thiagarajan, Geochim. Cosmochim. Acta 71, 3601 (2007)

    Article  ADS  Google Scholar 

  105. M. Boyet, R.W. Carlson, Science 309, 576 (2005)

    Article  ADS  Google Scholar 

  106. J. Korenaga, Reviews of Geophysics 46 (2008).

  107. C. Jaupart, S. Labrosse, F. Lucazeau, J.C. Mareschal, in Treatise on geophysics, (2015), p. 223.

  108. V. Patočka, O. Šrámek, N. Tosi, Phys. Earth Planet. Inter. 305, 106457 (2020)

    Article  Google Scholar 

  109. C. Jaupart, S. Labrosse, F. Lucazeau, J. C. Mareschal. Temperatures, heat, and energy in the mantle of the Earth. Treatise Geophys. 223, 70 (2015)

  110. J.C. Mareschal, C. Jaupart, C. Phaneuf, C. Perry, J. Geodyn. 54, 43 (2012)

    Article  Google Scholar 

  111. F. Lucazeau, Geochem. Geophys. Geosyst. 20, 4001 (2019)

    Article  ADS  Google Scholar 

  112. J.H. Davies, D.R. Davies, Solid Earth 1, 5 (2010)

    Article  ADS  Google Scholar 

  113. A.M. Hofmeister, R.E. Criss, Tectonophysics 395, 159 (2005)

    Article  ADS  Google Scholar 

  114. R. Von Herzen, E.E. Davis, A.T. Fisher, C.A. Stein, H.N. Pollack, Tectonophysics 409, 193 (2005)

    Article  ADS  Google Scholar 

  115. A.M. Hofmeister, R.E. Criss, Tectonophysics 409, 199 (2005)

    Article  ADS  Google Scholar 

  116. D.L. Williams, R.P. Von Herzen, Geology 2, 327–328 (1974)

    Article  ADS  Google Scholar 

  117. G.F. Davies, J. Geophys. Res. 85, 2517–2530 (1980)

    Article  ADS  Google Scholar 

  118. J.G. Sclater, C. Jaupart, D. Galson, Rev. Geophys. 18, 269–311 (1980)

    Article  ADS  Google Scholar 

  119. H.N. Pollack, S.J. Hurter, J.R. Johnson, Rev. Geophys. 31, 267–280 (1993)

    Article  ADS  Google Scholar 

  120. U.R. Christensen, J. Geophys. Res. 90, 10291–10300 (1985)

    Article  ADS  Google Scholar 

  121. W.F. McDonough, O. Šrámek, S.A. Wipperfurth, Geochem. Geophys. Geosyst. 21 (2020).

  122. T. Ruedas, Geochem. Geophys. Geosyst. 18, 3530 (2017)

    Article  ADS  Google Scholar 

  123. W.F. McDonough, O. Šrámek, S.A. Wipperfurth. Radiogenic power and geoneutrino luminosity of the earth and other terrestrial bodies through time. Geochem. Geophys. Geosyst. 21(7), e2019GC008865 (2020).

  124. W.R. Van Schmus, in Global earth physics: a handbook of physical constants, vol. 1, (2013), p. 283

  125. R. Haenel, L. Rybach, L. Stegena, in Handbook of terrestrial heat-flow density determination (1988)

  126. W.R. Van Schmus, Natural radioactivity of the crust and mantle. in Global earth physics: a handbook of physical constants, vol. 1, (2013), pp. 283–91.

  127. A. Wohlers, B.J. Wood, Geochim. Cosmochim. Acta 205, 226 (2017)

    Article  ADS  Google Scholar 

  128. S.A. Wipperfurth, O. Šrámek, W.F. McDonough, J. Geophys. Res. Solid Earth 125 (2020)

  129. S.R. Taylor, S.M. McLennan, Rev. Geophys. 33, 241 (1995)

    Article  ADS  Google Scholar 

  130. S.A. Wipperfurth, O. Šrámek, W.F. McDonough. Reference models for lithospheric geoneutrino signal. J. Geophys. Res. Solid Earth 125(2) (2020).

  131. K.H. Wedepohl, Geochim. Cosmochim. Acta 59, 1217 (1995)

    Article  ADS  Google Scholar 

  132. S.M. McLennan, Geochem. Geophys. Geosyst. 2 (2001)

  133. R.L. Rudnick, S. Gao, in The crust, vol 3 treatise on geochemistry. ed. by R.L. Rudnick (Elsevier, Oxford, 2003), p. 1

    Google Scholar 

  134. S.M. McLennan,Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2(4) (2001).

  135. B.R. Hacker, P.B. Kelemen, M.D. Behn, Earth Planet. Sci. Lett. 307, 501 (2011)

    Article  ADS  Google Scholar 

  136. O. Šrámek, W.F. McDonough, E.S. Kite, V. Lekić, S.T. Dye, S. Zhong, Earth Planet. Sci. Lett. 361, 356 (2013)

    Article  ADS  Google Scholar 

  137. K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, Y.J.N. Ohishi, 534, 95 (2016)

  138. F.D. Stacey, O.L.J.P. o. t., E. Anderson, P. Interiors, 124, 153 (2001).

  139. S. Labrosse, Phys. Earth Planet. Inter. 247, 36 (2015)

    Article  ADS  Google Scholar 

  140. F.D. Stacey, L. Orson. Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. J. Phys. Earth Anderson Planet. Inter. 124(3–4), 153–162 (2001) .

  141. B.A. Buffett, Science 299, 1675 (2003)

    Article  Google Scholar 

  142. S. Zhong, J. Geophys. Res. 111 (2006)

  143. G. Nolet, S. Karato, R. Montelli, Earth Planet. Sci. Lett. 248, 685 (2006)

    Article  ADS  Google Scholar 

  144. S. Zhong, Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res. 111(B4) (2006).

  145. W.F. McDonough, R. Arevalo, J. Phys. Conf. Ser. 136, 022006 (2008)

    Article  Google Scholar 

  146. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, 47, 481 (2009)

  147. Y.A. Kozlovsky, N. Adrianov, The Superdeep Well of the Kola Peninsula (Springer, 1987)

    Book  Google Scholar 

  148. M. Asplund, N. Grevesse, A. Jacques Sauval, P. Scott. The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47(1), 481–522 (2009).

  149. D. Koschny et al., Space Sci. Rev. 215 (2019)

  150. O.R. Norton, L. Chitwood, Field Guide to Meteors and Meteorites (Springer, 2008)

    Book  Google Scholar 

  151. K. D. Collerson, S. Hapugoda, B.S. Kamber, and Q. Williams. Rocks from the mantle transition zone: majorite-bearing xenoliths from malaita, Southwest Pacific. Science. 288(5469), 1215–1223 (2000)

  152. N. Dauphas, Nature 541, 521 (2017)

    Article  ADS  Google Scholar 

  153. R.G. Trønnes, M.A. Baron, K.R. Eigenmann, M.G. Guren, B.H. Heyn, A. Løken, C.E. Mohn, Tectonophysics 760, 165 (2019)

    Article  ADS  Google Scholar 

  154. J. Korenaga, Geochim. Cosmochim. Acta 73, 6952 (2009)

    Article  ADS  Google Scholar 

  155. P.H. Warren, Earth Planet. Sci. Lett. 311, 93 (2011)

    Article  ADS  Google Scholar 

  156. M. Javoy, Geophys. Res. Lett. 22, 2219 (1995)

    Article  ADS  Google Scholar 

  157. M. Javoy, E. Kaminski, Earth Planet. Sci. Lett. 407, 1 (2014)

    Article  ADS  Google Scholar 

  158. M.J. Drake, K. Righter, Nature 416, 39 (2002)

    Article  ADS  Google Scholar 

  159. C. Fitoussi, B. Bourdon, Science 335, 1477 (2012)

    Article  ADS  Google Scholar 

  160. M.G. Jackson, A.M. Jellinek, Geochem. Geophys. Geosyst. 14, 2954 (2013)

    Article  ADS  Google Scholar 

  161. T. Lyubetskaya, J. Korenaga, J. Geophys. Res. Solid Earth 112, B03212 (2007)

    ADS  Google Scholar 

  162. H. Palme, H.S.C. O’Neill, in Treatise on geochemistry (second edition). ed. by H.D. Holland, K.K. Turekian (Elsevier, Oxford, 2014), p. 1

    Google Scholar 

  163. S.A. Wipperfurth, M. Guo, O. Šrámek, W.F. McDonough, Earth Planet. Sci. Lett. 498, 196 (2018)

    Article  ADS  Google Scholar 

  164. G.F. Davies, Geochem. Geophys. Geosyst. 10 (2009).

  165. D. Turcotte, G. Schubert, Geodynamics (Cambridge University Press, 2014)

    Book  Google Scholar 

  166. G.F. Davies, Reconciling the geophysical and geochemical mantles: plume flows, heterogeneities, and disequilibrium. Geochem. Geophys. Geosyst. 10(10) (2009)

  167. R.L.G. Rudnick, Composition of the continental crust, in The crust, of treatise on geochemistry, vol. 4, (Elsevier, Oxford, 2014)

    Google Scholar 

  168. N.I. Christensen, W.D. Mooney, J. Geophys. Res. Solid Earth 100, 9761 (1995)

    Article  Google Scholar 

  169. G. Laske, G. Masters, Z. Ma, M. Pasyanos, Geophys. Res. Abstr. 14, 3743 (2012)

    Google Scholar 

  170. N. Takeuchi et al., Phys. Earth Planet. Inter. 288, 37 (2019)

    Article  ADS  Google Scholar 

  171. H.-C. Nataf, Y. Richard, Phys. Earth Planet. Inter. 95, 101 (1996)

    Article  ADS  Google Scholar 

  172. W.D. Mooney, G. Laske, T.G. Masters, J. Geophys. Res. 103, 727 (1998)

    Article  ADS  Google Scholar 

  173. CRUST 2.0: a new global crustal model at 2 x 2 degrees

  174. M.E. Pasyanos, T.G. Masters, G. Laske, Z. Ma, J. Geophys. Res. Solid Earth 119, 2153 (2014)

    Article  ADS  Google Scholar 

  175. G. Laske, G. Masters, C. CRUST 2.0: a new global crustal model at 2 × 2 degrees. J. Inst. Geophys. Reif Univ. Calif. Planet. Phys. (2001)

  176. A. Barna, S. Dye, arXiv preprint. (2015).

  177. X. Mao, R. Han, Y.-F. Li, Phys. Rev. D 100 (2019)

  178. T. Plank, in Treatise of geochemistry, 2nd edition, (2013)

  179. X. Mao, R. Han, Y.-F. Li. Non-negligible oscillation effects in the crustal geoneutrino calculations. Phys. Rev. D 100(11) (2019).

  180. T. Plank,The chemical composition of subducting sediments. Treatise Geochem. 2nd Edition (2013)

  181. J. Blichert-Toft, B. Zanda, D.S. Ebel, F. Albarède, Earth Planet. Sci. Lett. 300, 152 (2010)

    Article  ADS  Google Scholar 

  182. L. Ludhova, S. Zavatarelli, Adv. High Energy Phys. 2013 (2013).

  183. G.L. Fogli, E. Lisi, A. Palazzo, A.M. Rotunno, Phys. Rev. D 82, 093006 (2010)

    Article  ADS  Google Scholar 

  184. L. Ludhova, S. Zavatarelli. Studying the earth with geoneutrinos. Adv. High Energy Phys. 2013 (2013)

  185. C. Jollet, Il Nuovo Cimento C 39, 1 (2016)

    Google Scholar 

  186. B. Aharmim, S.N. Ahmed, T.C. Andersen, A.E. Anthony, N. Barros, E.W. Beier, A. Bellerive, et al. Measurement of the cosmic ray and neutrino-induced muon flux at the sudbury neutrino observatory. Phys. Rev. D 80(1) (2009).

  187. A. Abusleme et al., arXiv preprint. (2021)

  188. Z. Guo, L. Bathe-Peters, S. Chen, M. Chouaki, W. Dou, L. Guo, G. Hussain, J. Li, Q. Liu, L. Guang. Muon flux measurement at China Jinping underground laboratory. J. Chin. Phys. C. 45(2): 025001 (2021)

  189. S. Andringa et al., Adv. High Energy Phys. 2016, 1 (2016)

    Article  Google Scholar 

  190. M. Anderson, S. Andringa, L. Anselmo, E. Arushanova, S. Asahi, M. Askins, D. Auty, A. Back, Z. Barnard, arXiv preprint. (2020)

  191. V. Albanese et al., arXiv e-prints. (2021)

  192. S. Andringa, J. Phys. Conf. Ser. 1137 (2019)

  193. J.-C. Mareschal, C. Jaupart, J. Armitage, C. Phaneuf, C. Pickler, H. Bouquerel, Precambr. Res. 295, 187 (2017)

    Article  ADS  Google Scholar 

  194. S. Andringa,SNO+ present status and prospects. J. Phys. Conf. Ser. 1137 (2019).

  195. Y. Huang, V. Strati, F. Mantovani, S.B. Shirey, W.F. McDonough, Geochem. Geophys. Geosyst. 15, 3925 (2014)

    Article  ADS  Google Scholar 

  196. V. Strati, S.A. Wipperfurth, M. Baldoncini, W.F. McDonough, S. Gizzi, F. Mantovani, J. Phys. Conf. Ser. 1342 (2020).

  197. F. An et al., J. Phys. G Nucl. Part. Phys. 43, 030401 (2016)

    Article  ADS  Google Scholar 

  198. V. Strati, S.A. Wipperfurth, M. Baldoncini, W.F. McDonough, S. Gizzi, F. Mantovani, Geoneutrinos from the rock overburden at SNO+. J. Phys. Conf. Ser. 1342 (2020).

  199. V. Strati, M. Baldoncini, I. Callegari, F. Mantovani, W. F. McDonough, B. Ricci, G. Xhixha, Prog. Earth Planet. Sci. 2 (2015)

  200. R. Gao et al., Phys. Earth Planet. Inter. 299 (2020).

  201. V. Strati, M. Baldoncini, I. Callegari, F. Mantovani, W.F. McDonough, B. Ricci, G. Xhixha. Expected geoneutrino signal at JUNO. Prog. Earth Planet. Sci. 2(1) (2015).

  202. R. Gao, Z. Li, R. Han, A. Wang, Y. Li, Y. Xi, J. Liu, X. Mao, Y. Sun, Y. Xu. JULOC: a local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO. Phys. Earth Planet. Inter. 299 (2020).

  203. J. F. Beacom et al., Chin. Phys. C 41 (2017).

  204. Y.-C. Wu, X.-Q. Hao, Q. Yue, Y.-J. Li, J.-P. Cheng, K.-J. Kang, Y.-H. Chen, et al., Measurement of cosmic ray flux in the China JinPing underground laboratory. Chin. Phys. C 37(8) (2013).

  205. J.F. Beacom, S. Chen, J. Cheng, S.N. Doustimotlagh, Y. Gao, G. Gong, H. Gong, et al. Physics prospects of the Jinping neutrino experiment. Chin. Phys. C 41(2) (2017).

  206. M. Leyton, S. Dye, J. Monroe, Nat. Commun. 8, 15989 (2017)

    Article  ADS  Google Scholar 

  207. O. Smirnov, Prog. Part. Nucl. Phys. 109, 103712 (2019)

    Article  Google Scholar 

  208. P. Vogel, J.F. Beacom, Phys. Rev. D 60, 053003 (1999)

    Article  ADS  Google Scholar 

  209. K.A. Goettel, Geophys. Surv. 2, 369 (1976)

    Article  ADS  Google Scholar 

  210. X. Mougeot, Appl. Radiat. Isot. 154, 108884 (2019)

    Article  Google Scholar 

  211. M. C. Chen, in Treatise on geochemistry, (2014), p. 443

  212. L.M. Krauss, S.L. Glashow, D.N. Schramm, Nature 310, 191 (1984)

    Article  ADS  Google Scholar 

  213. M.C. Chen, Geoneutrino detection. Treatise Geochem. 443, 54 (2014)

  214. A. Serafini, in Neutrino Geoscience 2019, 21—23 October—Prague (Czech Republic), (2019)

  215. A. Cabrera et al., arXiv preprint. (2019)

  216. Z. Wang, S. Chen, Chin. Phys. C 44, 033001 (2020)

    Article  ADS  Google Scholar 

  217. A. K. Drukier, in Neutrino geoscience 201515—17 June, Paris (France), (2015)

  218. G. B. Gelmini, V. Takhistov, S.J. Witte, Phys. Rev. D 99 (2019)

  219. D. Zhao, S. Horiuchi, A. Hasegawa, Tectonophysics 212, 289 (1992)

    Article  ADS  Google Scholar 

  220. G.B. Gelmini, V. Takhistov, S.J. Witte. Geoneutrinos in large direct detection experiments. Phys. Rev. D 99(9) (2019).

  221. S. Togashi, N. Imai, Y. Okuyama-Kusunose, T. Tanaka, T. Okai, T. Koma, Y. Murata, Geochem. Geophys. Geosyst. 1 (2000)

  222. E. Patacca, P. Scandone, E. Di Luzio, G.P. Cavinato, M. Parotto, Tectonics 27 (2008)

  223. S. Togashi, N. Imai, Y. Okuyama-Kusunose, T. Tanaka, T. Okai, T. Koma, Y. Murata. Young upper crustal chemical composition of the orogenic Japan arc. Geochem. Geophys. Geosyst. 1 (2000)

  224. E. Patacca, P. Scandone, E. Di Luzio, G.P. Cavinato, M. Parotto. Structural architecture of the Central Apennines: interpretation of the CROP 11 seismic profile from the Adriatic Coast to the orographic divide. Tectonics 27(3) (2008).

  225. R. Di Stefano, I. Bianchi, M.G. Ciaccio, G. Carrara, E. Kissling. Three-dimensional moho topography in Italy: new constraints from receiver functions and controlled source seismology. Geochem. Geophys. Geosyst. 12(9) (2011).

Download references


KI and HW gratefully thank the KamLAND Collaboration for continues supports and contributions. The KamLAND experiment has been supported by the Japan Society for the Promotion of Science (JSPS), the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the United States Department of Energy (DOE). The Kamioka Mining and Smelting Company has provided services for activities in the mine. GB, FM, VG, AS thank the members of the collaboration who in various aspects contributed to the Borexino geoneutrino results in addition to the Gran Sasso Laboratory and the Italian INFN, the US NSF as well as the German BMBF, DFG, HGF, MPG, the Russian RFBR, the Polish RSF, for their support. GB thanks Livia Ludhova for the usefull discussions and Sandra Zavatarelli for her important help. FM, VS and AS would like to thank Giovanni Fiorentini, Eligio Lisi, William McDonough, Scott Wipperfurth and Ondřej Šrámek for the fruitful discussions and Kassandra Raptis for her precious support. Also supported by MAVA (PNBA-site emblématique pour les tortues) and PRCM/STM POOOA4/OA9.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. Bellini.


Appendix A.1—The crust near KamLAND

The Japan island arc, hosting the KamLAND detector, is part of a continental shelf located close to the eastern margin of the Eurasian plate. The Philippine plate and the Pacific plate are moving toward the Eurasian plate and are subducting, respectively, beneath the southern and the northern part of Japan. The submarine trenches are thus formed with parallel uplifted areas and intense igneous activity. The KamLAND detector is sited in a typical continental crust of Island Arc and Forearc environment. The Japan Sea (JS), situated between the Japan island arc and the Asian continent, is classified as marginal sea and it is bordered by islands and expanded basins on the back-arc side (back arc basin).

Enomoto et al. [3] and Fiorentini et al. [20] proposed a site-specific geophysical and geochemical modeling of the crust near the KamLAND detector and additionally studied the effects on geoneutrino signal of the peculiarities characterizing the subducting slab and the JS crust. The geophysical structure of the Japanese crust depicted, based on [219], envisages the presence of two layers, the UC and the LC, separated by the Conrad discontinuity and doesn’t account for the presence of SED and MC. The BC thickness ranges between 32 and 40 km with both the UC and LC accounting for the half of the total thickness. From the geochemical point of view, the LC is treated as a homogenous layer with aLC(U) = 0.85 ± 0.23 µg g−1 and aLC(Th) = 5.19 ± 2.08 µg g−1 based on the model of the reported in [220]. A more refined modeling is dedicated to the UC, which U and Th abundances are distributed with a 0.25° × 0.25° resolution grid adopting the chemical composition estimated by [221]. The measurements on 166 samples, collected on the exposed crust and associated to 37 geological groups, are adopted to infer the geochemical abundances for the whole UC. The surface exposure weighted average abundances are estimated to be aUC(U) = 2.32 µg g−1 and aUC(Th) = 8.3 µg g−1, slightly lower than the typical continental crust abundances. It is worth highlighting that although the analyzed data set does not include only rocks from the crystalline basement rocks, this approach ignores the presence of a distinct SED layer.

The subducting slabs of the Philippine and Pacific plates could represent a radionuclides enrichment factor for the LC of the Japan Arc. Fiorentini et al. [20] modeled a single slab penetrating below Japan with an average velocity v = 60 mm year−1 on a time scale T ∼ 108 year and encompasses two extreme scenarios for the evaluation of the impact of the subduction processes on the prediction of geoneutrino signal, i.e., (1) the slab keeps its trace elements during the subduction and supposing (2) all the U from the subducting crust is dissolved in fluids and transported to the base of the LC of Japan arc. The corresponding enrichment factor are 1.06 and 2.57 translating in an estimation of the total signal of the subducting slab of SSlab(U + Th) = 2.92 ± 0.88 TNU. According to [3], the subducting slab is a oceanic crust layer with a thickness of 10 km that, with the same composition of the OCC, originate an increase on the total geoneutrino flux of 0.21% for U and 0.11% for Th. Note that, based on seismic arguments, [3] set also the presence of a “cold” slab accumulated at the boundary between the UM and the LM (∼ 670 km). The U and Th abundances assigned to the slab (aSlab(U) = 0.021 μg g−1 and aSlab(Th) = 0.065 μg g−1) are assumed to originate an increase of the total flux of 2.1% and 1.0%.

An additional peculiarity of KL consists in the controversial nature of the crust beneath the JS. Although global models classify this portion of crust as a typical OCC, its higher thickness and the presence of fragments of CC make it unique and different. Fiorentini et al. [20] estimated the minimal and maximal geoneutrino production assuming for the JS crust two extreme scenario: (1) a typical OCC with a thickness of 7 km and a overlaying 1 km SED layer; (2) a typical CC characterized by a thickness of 19 km and an overlaying 4 km SED layer. The contribution to the signal from the JS SJS(U + Th) = 0.43 ± 0.13 TNU is thus defined as the central value of these two extremes with uncertainties encompassing the extreme values with 3σ. Enomoto et al. [3] studied that the effect of the JS crust can produce an increase of the total geoneutrino flux ranging between the 0.36% and 2%, assigning a continental or oceanic composition, respectively.

The SNFC(U + Th) estimated by [20] (Table 27) includes the signal produced by the six tiles (Fig. 26a), the subducting slab and the JS crust. For [3], only the SBC(U + Th) is reported, since the data do not permit to infer the signal from the NFC and from the FFC.

Appendix A.2—The crust near Borexino

The Gran Sasso range, where the Borexino experiment is located, is a massif of the Central sector of the Apennines, a peri-mediterranean chain part of the Adria plate. The actual geological structure of the Apennine chain is the result of the geodynamical processes occurred during its orogenesis began in the early Neogene (20 million years ago).

A refined reference model for the Gran Sasso area was developed by [180] in which local and specific geophysical and geochemical information are used to provide an estimate of the geoneutrino signal originated from the 6° × 4° (492 × 444 km) portion of the crust surrounding the LNGS (Fig. 26). The model subdivides the study area in two zones, the central tile (CT) and the rest of the region (RR), which are described with different degree of resolution. The CT, i.e., the crustal portion within ∼ 100 km from the Borexino detector, is described with a simplified tectonic model characterized by a typical resolution of (2.0 km × 2.0 km × 0.5 km).

The crust has a layered structure typical of Central Apennines, characterized by a SED cover thicker than that reported for the same area in any global crustal model (∼1 km, see Fig. 25). The deep structure of the Central Apennines was investigated analyzing data from the eastern part of CROP 11 deep reflection seismic profile that cuts across the whole chain. The interpretation of this profile, coupled with detailed information coming from deep (∼ 4 km) exploration wells, assures around the Gran Sasso area the existence of a thick (> 10 km) sedimentary sequence overlying the crystalline crust, detailed in Fig. 8 of [222]. Excluding the rare and shallow volcanic deposits, the sedimentary pile includes different sequences of carbonate and terrigenous sediments from Late Triassic to Pleistocene which reflect diverse depositional environments (carbonate platform and silicoclastic depositional systems). The U and Th mass abundances were obtained by ICP-MS and gamma spectroscopy measurements of the rock samples representative of the sedimentary succession and collected within 200 km from the LNGS. Considering the relative volume of the different reservoirs estimated on the basis of the 3D geological model, the weighted average abundance obtained for U (aSED(U) = 0.8 ± 0.2 μg g−1) and Th (aSED(Th) = 2.0 ± 0.5 μg g−1) are incompatible at more than 5σ level with global estimates (Table 21).

The overall thickness of the crust (∼ 35 km) modeled by [180] is in agreement with the global reference models (∼ 34 km, Fig. 25) and it is confirmed by the studies reported in [223, 224]. The local seismic sections do not highlight any evidence of MC and as result the crystalline basement is subdivided into UC (∼ 13 km) and LC (∼ 9 km). The U and Th mass abundances are obtained by ICP-MS and gamma spectroscopy measurements of the rock samples collected from the closest representative outcrops of UC and LC of the South Alpine basement, located in Ivrea-Verbano Zone and in Valsugana. The U and Th abundances adopted for the UC and LC are compatible at 1σ level with the estimates provided by the global models (Table 21).

The geoneutrino signal of the NFC is SNFC(U + Th) = 9.2 ± 1.2 TNU, where 77% of the signal originates from U and Th distributed in the CT. The maximal and minimal excursions of various input values and uncertainties reported in [180] are taken as the ± 3σ error range. The U and Th signal errors are conservatively considered fully positively correlated. The reduction of ∼ 6 TNU and ∼ 9 TNU with respect to the estimations which H13 and W20, respectively, provide—for the almost coincident crustal area (Fig. 26)—is mainly due to presence of thick sedimentary deposits composed primarily of U- and Th-poor carbonate rocks which are not taken into account in the global reference models.

Appendix A.3—Geoneutrino signal calculation

The geoneutrino signals in Tables 24 and 27 are reported as appeared in the corresponding references, or in some specific cases, are calculated using updated oscillation parameters. In this section, the approaches followed are detailed.

As in H13 the SNFC(U + Th) are not given, we infer it from the subtraction between SBC(U + Th) and SFFC(U + Th), the error propagation is performed via a Monte Carlo sampling of HPEs abundances according to their PDF to propagate the asymmetrical uncertainties of the non-Gaussian distributions.

For KamLAND, the SBC(U + Th) of [3] is calculated as SBC(U + Th) = SBC(U) + SBC(Th), where

$${S}_{\mathrm{BC}}\left(\mathrm{U}\right)={\phi }_{\mathrm{BC}}\left(\mathrm{U}\right) \cdot \frac{0.55}{0.59}\cdot \langle {\sigma }_{\mathrm{U}}\rangle $$
$${S}_{\mathrm{BC}}\left(\mathrm{Th}\right)={\phi }_{\mathrm{BC}}\left(\mathrm{Th}\right) \cdot \frac{0.55}{0.59}\cdot \langle {\sigma }_{\mathrm{Th}}\rangle $$

where \({\phi }_{\mathrm{BC}}\left(\mathrm{U}\right)\) and \({\phi }_{\mathrm{BC}}\left(\mathrm{Th}\right)\) are the uranium and thorium geoneutrino flux given from the sum of the crustal components reported in Table 2 of [3]; 0.55 e 0.59 are the average survival probability (\(\langle {P}_{\mathrm{ee}}\rangle \)) and the value adopted by [3], respectively; \(\langle {\sigma }_{\mathrm{U}}\rangle \) and \(\langle {\sigma }_{\mathrm{Th}}\rangle \) are the integrated IBD cross-section (see Sect. 2). The error propagation SBC(U + Th) is performed considering SBC(U) and SBC(Th) fully positive correlated.

For Borexino and KamLAND, the SBC(U + Th) of [24] and the relative uncertainties, are calculated rescaling the values reported in the reference (calculated with \(\langle {P}_{\mathrm{ee}}\rangle =0.56\)) for the updated \(\langle {P}_{\mathrm{ee}}\rangle =0.55.\)

For KamLAND and Borexino the SNFC(U + Th), SFFC(U + Th) and SBC(U + Th) of [20] are obtained summing the corresponding U and Th contributions reported and considering it fully positive correlated.

For Borexino, the SNFC(U + Th), SFFC(U + Th) and SBC(U + Th) as [180] and the relative uncertainties, are calculated rescaling the values reported in the reference (calculated with \(\langle {P}_{\mathrm{ee}}\rangle =0.57\)) for the updated \(\langle {P}_{\mathrm{ee}}\rangle =0.55.\)

The SNFC(U + Th) expected at Borexino of [10] is reported as it appears in the reference, while SFFC(U + Th) is taken from H13, since the same inputs are used. The SBC(U + Th) is obtained summing the SNFC(U + Th) an SFFC(U + Th) contribution with the error propagation performed via a Monte Carlo sampling of HPEs abundances according to their PDF to propagate the asymmetrical uncertainties of the non-Gaussian distributions.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellini, G., Inoue, K., Mantovani, F. et al. Geoneutrinos and geoscience: an intriguing joint-venture. Riv. Nuovo Cim. 45, 1–105 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: