Skip to main content

Plate tectonics and Earth’s magnetism: a personal viewpoint


This is a brief description of the theory of Plate Tectonics, a new method of looking at Earth’s geological evolution developed in the 1960s. The observations that led to the concepts of plate tectonics, sea floor spreading and continental drift are reviewed, with emphasis on studies of the Earth’s magnetic field and its reversal properties. Data on seismology, topography of the ocean floor, the nature of the oceanic crust, and the loss of heat from the ocean floor are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Jan Kluft. Accesed 24 Nov 2020

  2. 2.

    G.P. Hayes, G.L. Moore, D.E. Portner, M. Hearne, H. Flamme, M. Furtney, G.M. Smoczyk, Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    W.J. Morgan, in Rises, trenches, great faults and crustal blocks. American Geophysical Union meeting (Washington DC, USA, 1967), April 17 (See Wikipedia)

  4. 4.

    W.J. Morgan, Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73, 1959–1982 (1968)

    ADS  Article  Google Scholar 

  5. 5.

    D.P. McKenzie, R.L. Parker, The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280 (1967)

    ADS  Article  Google Scholar 

  6. 6.

    P. Bird, An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1–52 (2003)

    Article  Google Scholar 

  7. 7.

    C.G.A. Harrison, The present-day number of tectonic plates. Earth Planets Space 68, 37 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    R.A. Phinney, The History of the Earth’s Crust: A Symposium (Princeton University Press, Princeton, 1968), p. 244

    Google Scholar 

  9. 9.

    M.R. Rampino, A meeting that helped foster the acceptance of global tectonics. EOS 98(2), 18–22 (2017)

    Google Scholar 

  10. 10.

    P.M.S. Blackett, E.C. Bullard, S.K. Runcorn, A symposium on continental drift. Philos. Trans. R. Soc. A258(1088), 323 (1965)

    Google Scholar 

  11. 11.

    E.C. Bullard, J.E. Everitt, A.G. Smith, The fit of the continents around the Atlantic, in A symposium on continental drift, vol 258, no 1088. ed. by P.M.S. Blackett, E.C. Bullard, S.K. Runcorn (Philosophical Transactions of Royal Society, London, 1965), p. 323

    Google Scholar 

  12. 12.

    V. der Voo, Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions. Rev. Geophys. 28, 167–208 (1990)

    ADS  Article  Google Scholar 

  13. 13.

    E.J. Barron, C.G.A. Harrison, J.L. Sloan II., W.W. Hay, Paleogeography 180 million years ago to the present. Eclogae Geol. Helv. 74, 443–470 (1981)

    Google Scholar 

  14. 14.

    V. Vacquier, Transcurrent Faulting in the Ocean Floor, in “A symposium on continental drift” organized by P. M. S. Blackett, E. C. Bullard, and S. K. Runcorn. Phil. Trans. Roy. Soc. London 258A, 77–81 (1965)

    ADS  Google Scholar 

  15. 15.

    T.S. Kuhn, The Structure of Scientific Revolutions, 4th edn. (University of Chicago Press, Chicago, 2012).

    Book  Google Scholar 

  16. 16.

    F.B. Taylor, Bearing of the Tertiary Mountain Belt on the origin of the Earth’s plan. Bull. Geol. Soc. Am. 21, 179–226 (1910)

    Article  Google Scholar 

  17. 17.

    A. Wegener, Die Entstehung Der Kontinente Und Ozeane (Friedrich Vieweg & Sohn, Berlin, 1915).

    Google Scholar 

  18. 18.

    A. Wegener, The Origins of Continents and Oceans (Alfred Wegener, Methuen, 1966), p. 248. (English translation of Wegener’s fourth German edition)

    Google Scholar 

  19. 19.

    J.H. Pratt, On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India. Philos. Trans. R. Soc. Lond. 145, 53–100 (1855)

    ADS  Google Scholar 

  20. 20.

    G.B. Airy, On the compositions of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos. Trans. R. Soc. Lond. 145, 101–104 (1855)

    ADS  Google Scholar 

  21. 21.

    A.L. Du Toit, Our Wandering Continents; an Hypothesis of Continental Drift (Oliver and Boyd, London, 1937), p. 366

    Google Scholar 

  22. 22.

    F.J. Vine, D.H. Matthews, Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963)

    ADS  Article  Google Scholar 

  23. 23.

    A. Holmes, Radioactivity and Earth movements. Trans. Geol. Soc. Glasgow 18, 559–606 (1931)

    Article  Google Scholar 

  24. 24.

    A. Holmes, Principles of Physical Geology (The Ronald Press, New York, 1945), p. 532

    Google Scholar 

  25. 25.

    I.W.D. Dalziel, Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Bull. Geol. Soc. Am. 109, 16–42 (1997)

    Article  Google Scholar 

  26. 26.

    H.H. Hess, History of the ocean basins, in Petrologic Studies: A honor. ed. by A.F. Buddington, A.E.J. Engel (Geological Society of America, New York, 1962), pp. 590–620

    Google Scholar 

  27. 27.

    W. Gilbert, De Magnete (Peter Short, London, 1600).

    Google Scholar 

  28. 28.

    C.G.A. Harrison, B.L.K. Somayajulu, Behaviour of the Earth’s magnetic field during a reversal. Nature 212, 1193–1195 (1966)

    ADS  Article  Google Scholar 

  29. 29.

    K.M. Creer, Takesi Nagata (1913–1991). Q. J. R. Astron. Soc. 31, 461–462 (1996)

    ADS  Google Scholar 

  30. 30.

    M. LeGoff, L. Daly, D.J. Dunlop, C. Papusoi, Emile Thellier (1904–1978), A pioneer in studies of the “fossil” Earth’s magnetic field, historical events in people, in Aeronomy geomagnetism and solar-terrestrial physics. ed. by W. Schrӧder (Cambridge University Press, Cambridge, 2006), pp. 98–112

    Google Scholar 

  31. 31.

    L. Néel, Some theoretical aspects of rock magnetism. Adv. Phys. 4, 191–243 (1955)

    ADS  Article  Google Scholar 

  32. 32.

    S. Uyeda, Thermoremanent magnetism as a medium of paleomagnetism with special references to reverse thermoremanent magnetism. Jpn. J. Geophys. 2, 1–123 (1958)

    ADS  Google Scholar 

  33. 33.

    R.A. Fisher, Dispersion on a sphere. Proc. R. Soc. Lond. A217, 295–305 (1953)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    N.D. Watkins, G.P.L. Walker, Magnetostratigraphy of Eastern Iceland. Am. J. Sci. 277, 513–584 (1977)

    ADS  Article  Google Scholar 

  35. 35.

    P.M.S. Blackett, A negative experiment relating to magnetism and the Earth’s rotation. Philos. Trans. R. Soc. A245, 309–370 (1952)

    ADS  Google Scholar 

  36. 36.

    P.M.S. Blackett, Lectures on Rock Magnetism (the Second Weizmann Memorial Lectures) (Weizmann Science Press of Israel, Jerusalem, 1956), p. 131

    Google Scholar 

  37. 37.

    P.M.S. Blackett, J.A. Clegg, P.H.S. Stubbs, An analysis of rock magnetic data. Proc. R. Soc. A256, 291–322 (1960)

    ADS  Google Scholar 

  38. 38.

    M.D. Fuller, Magnetic anisotropy and paleomagnetism. J. Geophys. Res. 68, 293–309 (1963)

    ADS  Article  Google Scholar 

  39. 39.

    A. Cox, R.R. Doell, G.B. Dalrymple, Reversals of the Earth’s magnetic field. Science 144, 1537–1543 (1964)

    ADS  Article  Google Scholar 

  40. 40.

    I. McDougall, D.H. Tarling, Dating of polarity zones in the Hawaiian Islands. Nature 200, 54–56 (1963)

    ADS  Article  Google Scholar 

  41. 41.

    I. McDougall, D.H. Tarling, Dating geomagnetic polarity zones. Nature 202, 172–173 (1964)

    Article  Google Scholar 

  42. 42.

    J.G. Ogg, Magnetic polarity time scale of the Phanerozoic, in Global earth physics a handbook of physical constants. ed. by T.J. Ahrens (American Geophysical Union, Washington, 1995), pp. 240–270

    Google Scholar 

  43. 43.

    C.G.A. Harrison, B.M. Funnell, Relationship of palæomagnetic reversals and micropalæontology in two late Cænozoic cores from the Pacific Ocean. Nature 204, 566 (1964)

    ADS  Article  Google Scholar 

  44. 44.

    N.D. Opdyke, B. Glass, J.D. Hays, J.H. Foster, Paleomagnetic study of Antarctic deep-sea cores. Science 154, 349–357 (1966)

    ADS  Article  Google Scholar 

  45. 45.

    N.D. Watkins, Short period geomagnetic polarity events in deep-sea sedimentary cores. Earth Planet Sci. Lett. 4, 341–349 (1968)

    ADS  Article  Google Scholar 

  46. 46.

    B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)

    ADS  MATH  Article  Google Scholar 

  47. 47.

    W.S. Goree, M.D. Fuller, Magnetometers using RF-driven squids and their applications in rock magnetism and paleomagnetism. Rev. Geophys. Space Phys. 14, 591–608 (1976)

    ADS  Article  Google Scholar 

  48. 48.

    R.G. Mason, A.D. Raff, Magnetic survey off the west coast of the United States, 32°N. to 42°N. latitude. Geol. Soc. Am. Bull. 72, 1259–1266 (1961)

    ADS  Article  Google Scholar 

  49. 49.

    T. Atwater, Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Am. Bull. 81, 3513–3536 (1970)

    ADS  Article  Google Scholar 

  50. 50.

    W.C. Pitman, J.R. Heirtzler, Magnetic anomalies over the Pacific-Antarctic Ridge. Science 154, 1164–1171 (1966)

    ADS  Article  Google Scholar 

  51. 51.

    V. Vacquier, Apparatus for and method of measuring the terrestrial magnetic field. US Patent 2,151,627 (1938)

  52. 52.

    C.G.A. Harrison, R.D. Jarrard, V. Vacquier, R.L. Larson, Paleomagnetism of Cretaceous Pacific Seamounts. J. Geophys. Res 42, 859–882 (1975)

    Google Scholar 

  53. 53.

    M.N. Hill, Seismic refraction shooting in an area of the Eastern Atlantic. Philos. Trans. R. Soc. Lond. A244, 561–596 (1952)

    ADS  Google Scholar 

  54. 54.

    J. Ewing, M. Ewing, Seismic refraction measurements in the Atlantic Ocean basins, in the Mediterranean, on the mid-Atlantic Ridge and in the Norwegian Sea. Bull. Geol. Soc. Am. 70, 291–318 (1959)

    Article  Google Scholar 

  55. 55.

    R.W. Raitt, The crustal rocks, in The sea, vol. 3, ed. by M.N. Hill (Wiley, New York, 1963), pp. 85–102

    Google Scholar 

  56. 56.

    D.L. Anderson, Theory of the Earth (Blackwell, Boston, 1989), p. 366

    Google Scholar 

  57. 57.

    R.W. Raitt, G.G. Shor Jr., T.J.G. Francis, G.B. Morris, Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74, 3095–3109 (1969)

    ADS  Article  Google Scholar 

  58. 58.

    H. Hess, Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631 (1964)

    ADS  Article  Google Scholar 

  59. 59.

    M.G. Langseth Jr., X. Le Pichon, M. Ewing, Crustal structure of the mid-ocean ridges. 5. Heat flow through the atlantic ocean floor and convection currents. J. Geophys. Res. 71, 5321–5355 (1966)

    ADS  Article  Google Scholar 

  60. 60.

    R. Revelle, A.E. Maxwell, Heat flow through the floor of the Eastern North Pacific Ocean. Nature 170, 199–200 (1952)

    ADS  Article  Google Scholar 

  61. 61.

    E.C. Bullard, The flow of heat through the floor of the Atlantic Ocean. Proc. R. Soc. Lond. A222, 408–429 (1954)

    ADS  Google Scholar 

  62. 62.

    R.P. Von Herzen, S. Uyeda, Heat flow through the Eastern Pacific ocean floor. J. Geophys. Res. 68, 4219–4250 (1963)

    ADS  Article  Google Scholar 

  63. 63.

    D. McKenzie, M.J. Bickle, The volume and composition of melt generated by extension of the lithosphere). J. Petrol. 29(Part 3), 625–679 (1988)

    ADS  Article  Google Scholar 

  64. 64.

    J.G. Sclater, C. Jaupart, D. Galson, The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space. Phys. 18, 269–311 (1980)

    ADS  Article  Google Scholar 

  65. 65.

    R. Anderson, J.N. Skilbeck, Oceanic heat flow, in The sea, 7th edn., ed. by C. Emiliani (Wiley, New York, 1981), pp. 489–523

    Google Scholar 

  66. 66.

    J.T. Wilson, A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965)

    ADS  Article  Google Scholar 

  67. 67.

    L.R. Sykes, Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges. J. Geophys. Res. 72, 2131–2153 (1967)

    ADS  Article  Google Scholar 

  68. 68.

    L.W. Morley, An explanation of magnetic banding in ocean basins (dated 1963), in The sa, 7th edn., ed. by C. Emiliani (Wiley, New York, 1981), pp. 1717–1719

    Google Scholar 

  69. 69.

    C. Emiliani, The oceanic lithosphere, in The sea, 7th edn. (Wiley, New York, 1981), p. 1738

    Google Scholar 

  70. 70.

    L.W. Morley, Early work leading to the explanation of the banded geomagnetic imprinting of the ocean floor. EOS 67, 665–666 (1986)

    ADS  Article  Google Scholar 

  71. 71.

    D. McKenzie, C. Bowin, The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res. 81, 1903–1915 (1976)

    ADS  Article  Google Scholar 

  72. 72.

    J. Tuzo Wilson, A possible origin of the Hawaiian Islands, Canadian. J. Phys. 41, 863–870 (1963)

    ADS  Google Scholar 

  73. 73.

    C.G.A. Harrison, T. Lindh, Comparison between the hot spot and geomagnetic field reference frames. Nature 300, 251–252 (1982)

    ADS  Article  Google Scholar 

  74. 74.

    P. Molnar, T. Atwater, Relative motion of hot spots in the mantle. Nature 246, 288–291 (1973)

    ADS  Article  Google Scholar 

  75. 75.

    E. Bonatti, C.G.A. Harrison, Hot lines in the Earth’s mantle. Nature 263, 402–404 (1976)

    ADS  Article  Google Scholar 

  76. 76.

    D.B. Rowley, Rate of plate creation and destruction 180 Ma—present. Geol. Soc. Am. Bull. 114, 927–933 (2002)

    ADS  Article  Google Scholar 

  77. 77.

    J. Hartmann, Plate tectonics, carbon, and climate. Science 364, 126–127 (2019)

    ADS  Google Scholar 

  78. 78.

    M.H. Pincelli et al., On impact and volcanism across the Cretaceous–Paleogene boundary. Science 367, 266–272 (2020)

    Article  Google Scholar 

  79. 79.

    E.J. Barron, J.L. Sloan, C.G.A. Harrison, Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor; 180 M. Y. to the present. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 17–40 (1979)

    Article  Google Scholar 

  80. 80.

    C.G.A. Harrison, K.J. Miskell, G.W. Brass, E.S. Saltzman, J.L. Sloan, Continental hypsography. Tectonics 2, 357–377 (1983)

    ADS  Article  Google Scholar 

  81. 81.

    C.G.A. Harrison, Constraints on ocean volume change since the Archean. Geophys. Res. Lett. 26, 1913–1916 (1999)

    ADS  Article  Google Scholar 

  82. 82.

    K.V. Smit, S.B. Shirey, E.H. Hauri, R.A. Stern, Sulfur isotopes in diamonds reveal differences in continent construction. Science 364, 383–385 (2019)

    ADS  Article  Google Scholar 

  83. 83.

    C.G.A. Harrison, L.M. Pratt, E.G. Kauffman, F.B. Zelt, Modeling fluctuations in water depth during the Cretaceous. The Society of Economic Paleontologists and Mineralogists (SEPM). Fine-grained deposits and biofacies of the cretaceous western interior seaway: evidence of cyclic sedimentary processes 4, 122–134 (1985)

  84. 84.

    D. Giovanni, P.H. Barry, J.M. de Moor, K.G. Lloyd, M.O. Schrenk, Microbial influences on subduction zone, carbon cycling. EOS 101(6), 22–27 (2020)

    Google Scholar 

  85. 85.

    G.B. Whitman, Sea level variations, global sedimentation rates and the hypsographic curve. Earth Plant Sci. Lett. 54, 1–16 (1981)

    ADS  Article  Google Scholar 

  86. 86.

    C.G.A. Harrison, What factors control mechanical erosion rates. Int. J. Earth Sci. 88, 752–763 (2000)

    ADS  Article  Google Scholar 

  87. 87.

    C.G.A. Harrison, Rates of continental erosion and mountain building. Geol. Rund. 83, 431–447 (1994)

    Google Scholar 

  88. 88.

    G.W. Brass, C.G.A. Harrison, On the possibility of plate tectonics on Venus. Icarus 49, 86–96 (1982).

    ADS  Article  Google Scholar 

Download references


I thank Mike Fuller, John Sclater and an anonymous reviewer for important suggestions. I thank Ralf Weger for technical advice, and Keir Becker for stimulating discussions. I also thank students at UC San Diego for inviting me to their conference on the start of plate tectonics, and for Enrico Bonatti for encouragement to seek this method of revealing the history of the start of Plate Tectonics.

Author information



Corresponding author

Correspondence to Christopher G. A. Harrison.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, C.G.A. Plate tectonics and Earth’s magnetism: a personal viewpoint. Riv. Nuovo Cim. (2021).

Download citation


  • Plate tectonics
  • Earth magnetism
  • Seafloor spreading