Skip to main content

High precision cosmic ray physics with AMS-02 on the International Space Station

Abstract

The Alpha Magnetic Spectrometer (AMS-02) is a state of the art cosmic ray magnetic detector operating on the International Space Station (ISS) since May 2011, performing a continuous, direct measurement of cosmic ray flux and composition in the rigidity range, \(R=pc/Ze\), \(O(1 \text {GV})-O(1 \text {TV})\). The large statistics collected during 9 years of operation, more than \(1.5\ 10^{11}\) particles, together with the excellent particle identification provided by the instruments, allow for the precise study of the spectra of all cosmic ray species (\(p, He, Li, Be, B, C, N, O \dots \) and \(e^-\)), and begins the exploration of the rare antimatter components (\(\bar{p}, e^+, \bar{D}, \bar{^3He},\bar{^4He} \dots \)), which can be used as probes to search for new physics phenomena. We review the results obtained from the data collected so far, the perspectives of the ongoing analyses and of the forthcoming 10 years of data taking on the ISS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

References

  1. 1.

    V. Hess, Über Beobachtungen der durchdringenden Strahlung bei Sieben Freiballonfahrten. Phys. Z. 13, 1084 (1912)

    Google Scholar 

  2. 2.

    G. Arnison et al., UA1 Collaboration. Phys. Lett. B 122, 103 (1983)

    ADS  Google Scholar 

  3. 3.

    M. Banner et al., UA2 Collaboration. Phys. Lett. B 122, 476 (1983)

    ADS  Google Scholar 

  4. 4.

    Arnison, UA1 Collaboration. Phys. Lett. B 126, 398 (1983)

    ADS  Google Scholar 

  5. 5.

    P. Bagnaia et al., UA2 Collaboration. Phys. Lett. B 129, 130 (1983)

    ADS  Google Scholar 

  6. 6.

    V.M. Abazov et al., DØ Collaboration. Phys. Rev. Lett. 103(9), 092001 (2009)

    ADS  Google Scholar 

  7. 7.

    C.M.S. Collaboration, Phys. Lett. B. 716(1), 30–61 (2012)

    ADS  Google Scholar 

  8. 8.

    ATLAS Collaboration, Phys. Lett. B. 716 (1), 1-29, (2012)

  9. 9.

    A. Yamamoto et al., Adv. Space Res. 14(2), 75–87 (1994)

    ADS  MathSciNet  Google Scholar 

  10. 10.

    D.N. Baker, G.M. Mason, O. Figueroa, G. Colon, J.G. Watzin, R.M. Aleman, I.E.E.E. Trans, Geosci. Remote Sens. 31, 531–541 (1993)

    ADS  Google Scholar 

  11. 11.

    ESA’s Report to the 30th COSPAR Meeting, Hamburg, Germany, European Space Agency. Paris 1992, 47–57 (July 1994)

  12. 12.

    R.E. Streitmatter, in Proceedings 23th International Cosmic Ray Conference, Calgary (1993)

  13. 13.

    J.W. Mitchell et al., in Proceedings of 23rd International Cosmic Ray Conference, Calgary1, 519 (1993)

  14. 14.

    P. Carlson, T. Francke, M. Suffert, N. Weber, Proceedings of 23th International Cosmic Ray Conference. Calgary 2, 504 (1993)

    Google Scholar 

  15. 15.

    S.W. Barwick et al., Nucl. Instrum. Methods A 400, 34–52 (1997)

    ADS  Google Scholar 

  16. 16.

    J.J. Beatty et al., Proceedings of 26th International Cosmic Ray Conference. Salt Lake City 5, 61–64 (1999)

    Google Scholar 

  17. 17.

    J. Isbert et al., Proceedings of 10th International Conference Calorimetry in Particle Physics, Pasadena, CA, pp. 89-94 (March 25, 2002)

  18. 18.

    P. Boyle et al., 30th International Cosmic Ray Conference (Merida, Mexico, 2007)

    Google Scholar 

  19. 19.

    K. Yoshimura et al., Proceedings of 25th International Symposium Space Technology and Science (Kanazawa, Japan, 2006), pp. 1132–1137

    Google Scholar 

  20. 20.

    E.S. Seo et al., Adv. Space Res. 42, 1656–1663 (2008)

    ADS  Google Scholar 

  21. 21.

    S. Ahlen, V.M. Balebanov, R. Battiston, U. Becker, J. Burger, M. Capell, H.F. Chen, H.S. Chen, M. Chen, N. Chernoplekov, R. Clare, T.S. Dai, A. De Rujula, P. Fisher, Yu. Galaktionov, A. Gougas, Gu Wen-Qi, M. He, V. Koutsenko, A. Lebedev, T.P. Li, Y.S. Lu, D. Luckey, Y. Ma, R. McNeil, R. Orava, A. Prevsner, V. Plyaskine, H. Rubinstein, H. Rubinstein, R. Sagdeev, M. Salamon, H.W. Tango, S.C.C. Ting, I. Vetlitsky, Y.F. Wang, X. Ping-Choun, Z.Z. Xu, J.P. Wefel, Z.P. Zhang, B. Zhou, A. Zichichi, Nucl. Instr. Methods A 350(1–2), 351–367 (1994)

  22. 22.

    M. Aguilar et al., AMS Collaboration. Nucl. Phys. Proc. Suppl. 166, 19–29 (2007)

    Google Scholar 

  23. 23.

    https://www.esa.int/Science_Exploration

  24. 24.

    V. Bonvicini et al., Nucl. Instrum. Methods A 461, 262–268 (2001)

    ADS  Google Scholar 

  25. 25.

    M. Tavani et al., Astron. Astrophys. 502, 995 (2009)

    ADS  Google Scholar 

  26. 26.

    LAT Collaboration, Atwood, W.B., et al., Astrophys. J. 697 (2009) 1071-1102

  27. 27.

    C. Meegan et al., Astrophys. J. 702, 791–804 (2009)

    ADS  Google Scholar 

  28. 28.

    O. Adriani et al., CALET Collaboration. Phys. Rev. Lett. 119, 181101 (2017)

    ADS  Google Scholar 

  29. 29.

    G. Ambrosi et al., DAMPE Collaboration. Nature 552, 63–66 (2017)

    ADS  Google Scholar 

  30. 30.

    Institute of Electrical Engineering, IEE, Chinese Academy of Sciences, 100080 Beijing, China

  31. 31.

    Chinese Academy of Launching Vehicle Technology, CALT, 100076 Beijing, China

  32. 32.

    CMS Physics, Technical Design Report, Volume I: CERN-LHCC-2006-001, Feb. 2, (2006)

  33. 33.

    ATLAS detector and physics performance, Technical Design Report, Volume I, May 25, (1999)

  34. 34.

    W.V. Jones, IAF, 40th International Astronautical Congress, Malaga, Spain, (Oct. 7-13, 1989)

  35. 35.

    B. Blau et al., Gravit. Cosmol. Suppl. 5, 1 (2000)

    ADS  Google Scholar 

  36. 36.

    B. Blau et al., IEEE Trans. Appl. Supercond. 12, 349 (2002)

    ADS  Google Scholar 

  37. 37.

    SERMS, Via Pentima 4, 05100 Terni, Italy

  38. 38.

    B. Bertucci, Memorie della Societa Astronomica Italiana 79, 818 (2008)

    ADS  Google Scholar 

  39. 39.

    F. Cervelli et al., IEEE, TNS-00184-2009

  40. 40.

    IABG mbH, Einsteinstrasse 20, 85521 Ottobrunn, Germany

  41. 41.

    R. Battiston, Proceedings of 1st Arctic Workshop Future Physics and Accelerators. Saariselka, Finland, Aug. 21–26(1994), 138–156 (1994)

    Google Scholar 

  42. 42.

    J. Alcaraz et al., Nuovo Cimento A 112, (1999)

  43. 43.

    J. Alcaraz et al., Nucl. Instrum. Meth. A 593 (2008) 376-398, Erratum: ibid. 597 (2008) 270

  44. 44.

    M. Acciarri et al., Nucl. Instrum. Methods A 351, 300–312 (1994)

    ADS  Google Scholar 

  45. 45.

    Colibrys (Switzerland) Ltd, Maladière 83, 2000 Neuchâtel, Switzerland

  46. 46.

    FBK-irst, Via Sommarive, 18, 38050 Povo (Trento), Italy

  47. 47.

    O. Toker et al., Nucl. Instrum. Methods A 340, 572 (1994)

    ADS  Google Scholar 

  48. 48.

    A. Picozza et al., Astropart. Phys. 27, 296–315 (2007)

    ADS  Google Scholar 

  49. 49.

    5000, Hirakuchi, Hamakita-ku, Hamamatsu City, Shizuoka Pref., 434-8601, Japan

  50. 50.

    L. Baldini, in Proc. 27th International Cosmic Ray Conference, Hamburg, Germany, Aug. 7-15, (2001)

  51. 51.

    V. Bindi et al., in Proceedings 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31 - Aug. 7, (2003)

  52. 52.

    The ATLAS TRT collaboration, Abat, E., et al., J. Instrum. 3 (2008) P02014

  53. 53.

    ALICE TRD Collaboration, Nucl. Instrum. Methods A 502, 127–132 (2003)

    ADS  Google Scholar 

  54. 54.

    V. Saveliev, Nucl. Instrum. Methods A 408, 289–295 (1998)

    ADS  Google Scholar 

  55. 55.

    T. Siedenburg et al., Nucl. Phys. Proc. Suppl. 113, 154–158 (2002)

    ADS  Google Scholar 

  56. 56.

    J. Casaus et al., Nucl. Phys. Proc. Suppl. 113, 147–153 (2002)

    ADS  Google Scholar 

  57. 57.

    M. Adinolfi et al., Nucl. Instrum. Meth. A 482, 364–386 (2002)

    ADS  Google Scholar 

  58. 58.

    F. Cadoux et al., Nucl. Phys. Proc. Suppl. 113, 159–165 (2002)

    ADS  Google Scholar 

  59. 59.

    P. Blasi, Braz. J. Phys. 44, 426 (2014)

    ADS  Google Scholar 

  60. 60.

    P. Blasi, Astron. Astrophys. Rev. 21, 70 (2013)

    ADS  Google Scholar 

  61. 61.

    M. Ackermann et al., Phys. Rev. Lett. 112, 151103 (2014)

    ADS  Google Scholar 

  62. 62.

    M. Hareyama et al., J. Phys. Conf. Ser. 31, 159 (2006)

    ADS  Google Scholar 

  63. 63.

    M. Boezio et al., Astropart. Phys. 19, 583 (2003)

    ADS  Google Scholar 

  64. 64.

    E. Diehl, D. Ellithorpe, D. Muller, S.P. Swordy, Astropart. Phys. 18, 487 (2003)

    ADS  Google Scholar 

  65. 65.

    J. Alcaraz et al., Phys. Lett. B 490, 27 (2000)

    ADS  Google Scholar 

  66. 66.

    W. Menn et al., Astrophys. J. 533, 281 (2000)

    ADS  Google Scholar 

  67. 67.

    R. Bellotti et al., Phys. Rev. D 60, 052002 (1999)

    ADS  Google Scholar 

  68. 68.

    M. Boezio et al., Astrophys. J. 518, 457 (1999)

    ADS  Google Scholar 

  69. 69.

    K. Asakimori et al., Astrophys. J. 502, 278 (1998)

    ADS  Google Scholar 

  70. 70.

    M. Ichimura et al., Phys. Rev. D 48, 1949 (1993)

    ADS  Google Scholar 

  71. 71.

    I.P. Ivanenko et al., in Proceedings of the 23rd International Cosmic Ray Conference, Calgary (World Scientific, Singapore, 1993), p. 17

    Google Scholar 

  72. 72.

    A.D. Panov et al., ATIC Collaboration. Bull. Russ. Acad. Sci. Phys. 73, 564 (2009)

    Google Scholar 

  73. 73.

    D. Maurin, F. Melot, R. Taillet, Astron. Astrophys. 569, A32 (2014)

    ADS  Google Scholar 

  74. 74.

    K. Abe et al., (BESS-Polar Collaboration) Phys. Rev. Lett. 108, 051102 (2012)

    ADS  Google Scholar 

  75. 75.

    Y. Shikaze et al., BESS Collaboration. Astropart. Phys. 28, 154 (2007)

    ADS  Google Scholar 

  76. 76.

    S. Haino et al., Phys. Lett. B 594, 35 (2004)

    ADS  Google Scholar 

  77. 77.

    T. Sanuki et al., Astrophys. J. 545, 1135 (2000)

    ADS  Google Scholar 

  78. 78.

    Y.S. Yoon et al., CREAM Collaboration. Astrophys. J. 728, 122 (2011)

    ADS  Google Scholar 

  79. 79.

    O. Adriani et al., PAMELA Collaboration. Astrophys. J. 765, 91 (2013)

    ADS  Google Scholar 

  80. 80.

    O. Adriani et al., Science 332, 69 (2011)

    ADS  Google Scholar 

  81. 81.

    G. Bernard, T. Delahaye, P. Salati, R. Taillet, Astron. Astrophys. 555, A48 (2013)

    Google Scholar 

  82. 82.

    V.S. Ptuskin, V. Zirakashvili, E.S. Seo, Astrophys. J. 763, 47 (2013)

    ADS  Google Scholar 

  83. 83.

    N. Tomassetti, Astrophys. J. Lett. 752, L13 (2012)

    ADS  Google Scholar 

  84. 84.

    P. Blasi, E. Amato, P.D. Serpico, Phys. Rev. Lett. 109, 061101 (2012)

    ADS  Google Scholar 

  85. 85.

    A.E. Vladimirov, G. Jóhannesson, I.V. Moskalenko, T.A. Porter, Astrophys. J. 752, 68 (2012)

    ADS  Google Scholar 

  86. 86.

    M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 114, 171103 (2015)

    ADS  Google Scholar 

  87. 87.

    P. Papini et al., Astrophys. J. 615, 259 (2004)

    ADS  Google Scholar 

  88. 88.

    M. Aguilar et al., AMS Collaboration. Phys. Rep. 366, 331 (2002)

    ADS  Google Scholar 

  89. 89.

    M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 115, 211101 (2015)

    ADS  Google Scholar 

  90. 90.

    M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 120, 021101 (2018)

    ADS  Google Scholar 

  91. 91.

    M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 113, 121102 (2014)

    ADS  Google Scholar 

  92. 92.

    M. Aguilar et al., Phys. Rev. Lett. 119, 251101 (2017)

    ADS  Google Scholar 

  93. 93.

    G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A, 362, 487 (1995)

  94. 94.

    V. Blobel, Report No. DESY-84-118, (1984)

  95. 95.

    A. Kondor, Nucl. Instrum. Methods Phys. Res. 216, 177 (1983)

    ADS  Google Scholar 

  96. 96.

    J. Albert et al., Nucl. Instrum. Methods Phys. Res. Sect. A 583, 494 (2007)

    ADS  Google Scholar 

  97. 97.

    IGRF-12 (2015), currently available at http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (unpublished)

  98. 98.

    P. Bobik, G. Boella, M.J. Boschini, D. Grandi, M. Gervasi, K. Kudela, S. Pensotti, P.G. Rancoita, J. Geophys. Res. 111, A05205 (2006)

    ADS  Google Scholar 

  99. 99.

    N.A. Tsyganenko, M.I. Sitnov, J. Geophys. Res. 110, A03208 (2005)

    ADS  Google Scholar 

  100. 100.

    G.D. Lafferty, T.R. Wyatt, Nucl. Instrum. Methods Phys. Res. Sect. A 355, 541 (1995). They have used Eq. (6) with \({R} \equiv x_{lw}\)

  101. 101.

    L.J. Gleeson, W.I. Axford, Astrophys. J. 154, 1011 (1968)

    ADS  Google Scholar 

  102. 102.

    K. Beuermann et al., Astron. Astrophys. 352, L26 (1999)

    ADS  Google Scholar 

  103. 103.

    L. Hernquist, Astrophys. J. 356, 359 (1990)

    ADS  Google Scholar 

  104. 104.

    See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.171103 for the tabulated flux

  105. 105.

    I.A. Grenier, J.H. Black, A.W. Strong, Annu. Rev. Astron. Astrophys. 53, 199 (2015)

    ADS  Google Scholar 

  106. 106.

    A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007)

    ADS  Google Scholar 

  107. 107.

    V.A. Derbina et al., Astrophys. J. 628, L41 (2005)

    ADS  Google Scholar 

  108. 108.

    K. Abe et al., BESS Collaboration. Astrophys. J. 822, 65 (2016)

    ADS  Google Scholar 

  109. 109.

    A.D. Erlykin, A.W. Wolfendale, J. Phys. G 42, 075201 (2015)

    ADS  Google Scholar 

  110. 110.

    S. Thoudam, J.R. Hörandel, Astron. Astrophys. 567, A33 (2014)

    ADS  Google Scholar 

  111. 111.

    M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, Phys. Rev. Lett. 108, 081104 (2012)

    ADS  Google Scholar 

  112. 112.

    L.A. Fisk, G. Gloeckler, Astrophys. J. 744, 127 (2012)

    ADS  Google Scholar 

  113. 113.

    Y. Ohira, K. Ioka, Astrophys. J. Lett. 729, L13 (2011)

    ADS  Google Scholar 

  114. 114.

    J. Alcaraz et al., Phys. Lett. B 484, 10 (2000)

    ADS  Google Scholar 

  115. 115.

    C.C. Finlay et al., Geophys. J. Int. 183, 1216 (2010)

    ADS  Google Scholar 

  116. 116.

    A. Ingemersson et al., Nucl. Phys. A 676, 3 (2000)

    ADS  Google Scholar 

  117. 117.

    A. Auce, R.F. Carlson, A.J. Cox, A. Ingemarsson, R. Johansson, P.U. Renberg, O. Sundberg, G. Tibell, R. Zorro, Phys. Rev. C 50, 871 (1994)

    ADS  Google Scholar 

  118. 118.

    I. Tanihata et al., Phys. Lett. B 160, 380 (1985)

    ADS  Google Scholar 

  119. 119.

    V.D. Aksinenko et al., Nucl. Phys. A 348, 518 (1980)

    ADS  Google Scholar 

  120. 120.

    E.O. Abdrahmanov et al., Z. Phys. C 5, 1 (1980)

    ADS  Google Scholar 

  121. 121.

    J. Jaros et al., Phys. Rev. C 18, 2273 (1978)

    ADS  Google Scholar 

  122. 122.

    AMS Collaboration, Measurement of Nuclear Interaction Cross Sections with the Alpha Magnetic Spectrometer on the International Space Station (to be published)

  123. 123.

    A. Castellina, F. Donato, Astropart. Phys. 24, 146 (2005)

    ADS  Google Scholar 

  124. 124.

    E. Juliusson, Astrophys. J. 191, 331 (1974)

    ADS  Google Scholar 

  125. 125.

    C.D. Orth, A. Buffington, G.F. Smoot, T.S. Mast, Astrophys. J. 226, 1147 (1978)

    ADS  Google Scholar 

  126. 126.

    W.R. Webber, S.M. Yushak, in Proceedings of 16th International Cosmic Ray Conference, Tokyo (Institute for Cosmic Ray Research, Univ. of Tokyo, Tokyo, Japan, 1979), Vol. 12, p. 51

  127. 127.

    J.A. Lezniak, W.R. Webber, Astrophys. J. 223, 676 (1978)

    ADS  Google Scholar 

  128. 128.

    J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret, E. Juliusson, Astron. Astrophys. 233, 96 (1990)

    ADS  Google Scholar 

  129. 129.

    R.C. Maehl, J.F. Ormes, A.J. Fisher, F.A. Hagen, Astrophys. Space Sci. 47, 163 (1977)

    ADS  Google Scholar 

  130. 130.

    M. Simon, H. Spiegelhauer, W.K.H. Schmidt, F. Siohan, J.F. Ormes, V.K. Balasubrahmanyan, J.F. Arens, Astrophys. J. 239, 712 (1980)

    ADS  Google Scholar 

  131. 131.

    S.P. Swordy, D. Müller, P. Meyer, J. L’Heureux, J.M. Grunsfeld, Astrophys. J. 349, 625 (1990)

    ADS  Google Scholar 

  132. 132.

    A. Obermeier, M. Ave, P. Boyle, Ch. Höppner, J. Hörandel, D. Müller, Astrophys. J. 742, 14 (2011)

    ADS  Google Scholar 

  133. 133.

    O. Adriani et al., Astrophys. J. 791, 93 (2014)

    ADS  Google Scholar 

  134. 134.

    P.L. Biermann, J.K. Becker, J. Dreyer, A. Meli, E.-S. Seo, T. Stanev, Astrophys. J. 725, 184 (2010)

    ADS  Google Scholar 

  135. 135.

    Q. Yuan, B. Zhang, X.-J. Bi, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing (Institute of High Energy Physics. Beijing 6, 222 (2011)

  136. 136.

    S. Thoudam, J.R. Hörandel, Mon. Not. R. Astron. Soc. 435, 2532 (2013)

    ADS  Google Scholar 

  137. 137.

    N. Tomassetti, Phys. Rev. D 92, 081301 (R) (2015)

  138. 138.

    AMS Collaboration, Measurement of cosmic ray fluxes with the alpha magnetic spectrometer on the international space station (to be published)

  139. 139.

    G. Jóhannesson et al., Astrophys. J. 824, 16 (2016)

    ADS  Google Scholar 

  140. 140.

    Y. Géenolini, D. Maurin, I.V. Moskalenko, M. Unger, Phys. Rev. C 98, 034611 (2018)

    ADS  Google Scholar 

  141. 141.

    B. Coste, L. Derome, D. Maurin, A. Putze, Astron. Astrophys. 539, A88 (2012)

    ADS  Google Scholar 

  142. 142.

    N. Tomassetti, Astrophys. Space Sci. 342, 131 (2012)

    ADS  Google Scholar 

  143. 143.

    M. Aguilar et al., Phys. Rev. Lett. 117, 231102 (2016)

    ADS  Google Scholar 

  144. 144.

    R. Dwyer, P. Meyer, Astrophys. J. 322, 981 (1987)

    ADS  Google Scholar 

  145. 145.

    W.R. Webber et al., in Proceedings of 19th International CosmicRay Conference, La Jolla, 2, p. 16 (1985)

  146. 146.

    D. Muller, S.P. Swordy, P. Meyer, J. L’Heureux, J.M. Grunsfeld, Astrophys. J. 374, 356 (1991)

    ADS  Google Scholar 

  147. 147.

    J. Buckley, J. Dwyer, D. Mueller, S. Swordy, K.K. Tang, Astrophys. J. 429, 736 (1994)

    ADS  Google Scholar 

  148. 148.

    M. Aguilar et al., Astrophys. J. 724, 329 (2010)

    ADS  Google Scholar 

  149. 149.

    A.D. Panov et al., in Proceedings of the 23rd International Cosmic Ray Conference Mérida, edited by R. Caballero, J. C. D’Olivo, G. Medina-Tanco, L. Nellen, F. A. Sánchez, and J. F. Valdés-Galicia (Universidad Nacional Autónoma de México, Mexico City, 2008), Vol. 2, pp. 3-6

  150. 150.

    H.S. Ahn et al., Astropart. Phys. 30, 133 (2008)

    ADS  Google Scholar 

  151. 151.

    A. Obermeier, P. Boyle, J. Hörandel, D. Müller, Astrophys. J. 752, 69 (2012)

    ADS  Google Scholar 

  152. 152.

    M.S. Potgieter, Living Rev. Solar Phys. 10, 3 (2013)

    ADS  Google Scholar 

  153. 153.

    O. Reimer et al., Astrophys. J. 496, 490 (1998)

    ADS  Google Scholar 

  154. 154.

    J.Z. Wang et al., Astrophys. J. 564, 244 (2002)

    ADS  Google Scholar 

  155. 155.

    Z.D. Myers et al., in Proceedings of the 28th International Cosmic Ray Conference (ICRC 2003), 1805, Tokyo, Japan (Universal Academy Press Inc, Tokyo, 2003)

    Google Scholar 

  156. 156.

    E. Mocchiutti (WIZARD/Caprice Collaboration), in Proceedings of the 28th International Cosmic Ray Conference (ICRC), 1809 (Tokyo, Japan (Universal Academy Press Inc, Tokyo, 2003), p. (2003)

  157. 157.

    O. Adriani et al., Astrophys. J. 818, 68 (2016)

    ADS  Google Scholar 

  158. 158.

    M. Aguilar et al., Phys. Rev. Lett. 121, 051101 (2018)

    ADS  Google Scholar 

  159. 159.

    M. Aguilar et al., Phys. Rev. Lett. 121, 051102 (2018)

    ADS  Google Scholar 

  160. 160.

    A.E. Vladimirov, S.W. Digel, G. Jóhannesson, P.F. Michelson, I.V. Moskalenko, P.L. Nolan, E. Orlando, T.A. Porter, A.W. Strong, Comput. Phys. Commun. 182, 1156 (2011)

    ADS  Google Scholar 

  161. 161.

    R. Trotta, G. Jóhannesson, I.V. Moskalenko, T.A. Porter, R. Ruiz de Austri, A.W. Strong, Astrophys. J. 729, 106 (2011)

    ADS  Google Scholar 

  162. 162.

    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941)

    ADS  Google Scholar 

  163. 163.

    A.N. Kolmogorov, Proc. R. Soc. A 434, 9 (1991)

    ADS  Google Scholar 

  164. 164.

    R.H. Kraichnan, Phys. Fluids 8, 1385 (1965)

    ADS  MathSciNet  Google Scholar 

  165. 165.

    N. Tomassetti, Phys. Rev. D 92, 081301(R) (2015)

    ADS  Google Scholar 

  166. 166.

    R. Cowsik, B. Burch, T. Madziwa-Nussinov, Astrophys. J. 786, 124 (2014)

    ADS  Google Scholar 

  167. 167.

    R. Cowsik, Annu. Rev. Nucl. Part. Sci. 66, 297 (2016)

    ADS  Google Scholar 

  168. 168.

    R. Cowsik, T. Madziwa-Nussinov, Astrophys. J. 827, 119 (2016)

    ADS  Google Scholar 

  169. 169.

    P. Mertsch, S. Sarkar, Phys. Rev. D 90, 061301(R) (2014)

    ADS  Google Scholar 

  170. 170.

    I. Cholis, D. Hooper, Phys. Rev. D 89, 043013 (2014)

    ADS  Google Scholar 

  171. 171.

    L. Accardo et al., Phys. Rev. Lett. 113, 121101 (2014)

    ADS  Google Scholar 

  172. 172.

    M. Aguilar et al., Phys. Rev. Lett. 117, 091103 (2016)

    ADS  Google Scholar 

  173. 173.

    H.S. Ahn et al., Astrophys. J. 715, 1400 (2010)

    ADS  Google Scholar 

  174. 174.

    H.S. Ahn et al., Astrophys. J. 714, L89 (2010)

    ADS  Google Scholar 

  175. 175.

    H.S. Ahn et al., Astrophys. J. 707, 593 (2009)

    ADS  Google Scholar 

  176. 176.

    F. Gahbauer, G. Hermann, J.R. Hörandel, D. Müller, A.A. Radu, Astrophys. J. 607, 333 (2004)

    ADS  Google Scholar 

  177. 177.

    M. Ave, P.J. Boyle, F. Gahbauer, C. Höppner, J.R. Hörandel, M. Ichimura, D. Müller, A. Romero-Wolf, Astrophys. J. 678, 262 (2008)

    ADS  Google Scholar 

  178. 178.

    Y.S. Yoon et al., Astrophys. J. 765, 91 (2013)

    Google Scholar 

  179. 179.

    S. Ting, Proc. Sci., ICRC2015 036 (2015)

  180. 180.

    M. Aguilar et al., Phys. Rev. Lett. 121, 051103 (2018)

    ADS  Google Scholar 

  181. 181.

    H.A. Bethe, Phys. Rev. 55, 434 (1939)

    ADS  Google Scholar 

  182. 182.

    F. Vincenzo, F. Belfiore, R. Maiolino, F. Matteucci, P. Ventura, Mon. Not. R. Astron. Soc. 458, 3466 (2016)

    ADS  Google Scholar 

  183. 183.

    C. Chiappini, D. Romano, F. Matteucci, Mon. Not. R. Astron. Soc. 339, 63 (2003)

    ADS  Google Scholar 

  184. 184.

    R.B.C. Henry, M.G. Edmunds, J. Koppen, Astrophys. J. 541, 660 (2000)

    ADS  Google Scholar 

  185. 185.

    A. Putze, L. Derome, D. Maurin, Astron. Astrophys. 516, A66 (2010)

    ADS  Google Scholar 

  186. 186.

    M. Aguilar et al., Phys. Rev. Lett. 123, 181102 (2019)

    ADS  Google Scholar 

  187. 187.

    F. Dimiccoli et. al., arXiv:1910.07053v1, (15 Oct 2019)

  188. 188.

    M. Aguilar et al., Phys. Rev. Lett. 110, 141102 (2013)

    ADS  Google Scholar 

  189. 189.

    P.D. Serpico, Astropart. Phys. 39–40, 2 (2012)

    ADS  Google Scholar 

  190. 190.

    T. Linden, S. Profumo, Astrophys. J. 772, 18 (2013)

    ADS  Google Scholar 

  191. 191.

    M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, J. Cosmol. Astropart. Phys. 04, 006 (2014)

    Google Scholar 

  192. 192.

    N. Tomassetti, F. Donato, Astrophys. J. Lett. 803, L15 (2015)

    ADS  Google Scholar 

  193. 193.

    D. Hooper, I. Cholis, T. Linden, K. Fang, Phys. Rev. D 96, 103013 (2017)

    ADS  Google Scholar 

  194. 194.

    W. Liu, X.J. Bi, S.J. Lin, B.B. Wang, P.F. Yin, Phys. Rev. D 96, 023006 (2017)

    ADS  Google Scholar 

  195. 195.

    S. Profumo, J. Reynoso-Cordova, N. Kaaz, M. Silverman, Phys. Rev. D 97, 123008 (2018)

    ADS  Google Scholar 

  196. 196.

    K. Blum, B. Katz, E. Waxman, Phys. Rev. Lett. 111, 211101 (2013)

    ADS  Google Scholar 

  197. 197.

    M.S. Turner, F. Wilczek, Phys. Rev. D 42, 1001 (1990)

    ADS  Google Scholar 

  198. 198.

    J. Ellis, A.I.P. Conf, Proc. 516, 21 (2000)

    Google Scholar 

  199. 199.

    H.C. Cheng, J.L. Feng, K.T. Matchev, Phys. Rev. Lett. 89, 211301 (2002)

    ADS  Google Scholar 

  200. 200.

    G. Kane, R. Lu, S. Watson, Phys. Lett. B 681, 151 (2009)

    ADS  Google Scholar 

  201. 201.

    J. Kopp, Phys. Rev. D 88, 076013 (2013)

    ADS  Google Scholar 

  202. 202.

    C.H. Chen, C.W. Chiang, T. Nomura, Phys. Lett. B 747, 495 (2015)

    ADS  Google Scholar 

  203. 203.

    H.C. Cheng, W.C. Huang, X. Huang, I. Low, Y.L. Sming Tsia, Q. Yuan, J. Cosmol, Astropart. Phys. 03, 041 (2017)

  204. 204.

    S.J. Lin, Q. Yuan, X.J. Bi, Phys. Rev. D 91, 063508 (2015)

    ADS  Google Scholar 

  205. 205.

    Y. Bai, J. Berger, S. Lu, Phys. Rev. D 97, 115012 (2018)

    ADS  Google Scholar 

  206. 206.

    L. Ali Cavasonza, H. Gast, M. Krämer, M. Pellen, S. Schael, Astrophys. J. 839, 36 (2017)

  207. 207.

    M. Boschini et al., Astrophys. J. 854, 94 (2018)

    ADS  Google Scholar 

  208. 208.

    M. Kachelriess, A. Neronov, D.V. Semikoz, Phys. Rev. D 97, 063011 (2018)

    ADS  Google Scholar 

  209. 209.

    M. Aguilar et al., Phys. Rev. Lett. 122, 041102 (2019)

    ADS  Google Scholar 

  210. 210.

    M. Aguilar et al., Phys. Rev. Lett. 122, 101101 (2019)

    ADS  Google Scholar 

  211. 211.

    O. Adriani et al., Phys. Rev. Lett. 106, 201101 (2011)

    ADS  Google Scholar 

  212. 212.

    O. Adriani et al., Phys. Rev. Lett. 111, 081102 (2013)

    ADS  Google Scholar 

  213. 213.

    M. Ackermann et al., Phys. Rev. Lett. 108, 011103 (2012)

    ADS  Google Scholar 

  214. 214.

    C. Grimani et al., Astron. Astrophys. 392, 287 (2002)

    ADS  Google Scholar 

  215. 215.

    M. Boezio et al., Adv. Space Res. 27, 669 (2001)

    ADS  Google Scholar 

  216. 216.

    M. Aguilar et al., Phys. Lett. B 646, 145 (2007)

    ADS  Google Scholar 

  217. 217.

    S.W. Barwick et al., Astrophys. J. 498, 779 (1998)

    ADS  Google Scholar 

  218. 218.

    M.A. DuVernois et al., Astrophys. J. 559, 296 (2001)

    ADS  Google Scholar 

  219. 219.

    J.J. Beatty et al., Phys. Rev. Lett. 93, 241102 (2004)

    ADS  Google Scholar 

  220. 220.

    J. Chang et al., Nature (London) 456, 362 (2008)

    ADS  Google Scholar 

  221. 221.

    F. Aharonian et al., Astron. Astrophys. 508, 561 (2008)

    ADS  Google Scholar 

  222. 222.

    F. Aharonian et al., Phys. Rev. Lett. 101, 261104 (2008)

    ADS  Google Scholar 

  223. 223.

    S. Abdollahi et al., Phys. Rev. D 95, 082007 (2017)

    ADS  Google Scholar 

  224. 224.

    G. Ambrosi et al., (DAMPE Collaboration), Nature (London) 552, 63 (2017)

  225. 225.

    O. Adriani et al., Phys. Rev. Lett. 120, 261102 (2018)

    ADS  Google Scholar 

  226. 226.

    I.V. Moskalenko, A.W. Strong, Astrophys. J. 493, 694 (1998)

    ADS  Google Scholar 

  227. 227.

    A.M. Hillas, J. Phys. G 31, R95 (2005)

    ADS  Google Scholar 

  228. 228.

    Y.Z. Fan, B. Zhang, J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010)

    ADS  Google Scholar 

  229. 229.

    T. Kobayashi, Y. Komori, K. Yoshida, J. Nishimura, Astrophys. J. 601, 340 (2004)

    ADS  Google Scholar 

  230. 230.

    A.W. Strong, E. Orlando, T.R. Jaffe, Astron. Astrophys. 534, A54 (2011)

    ADS  Google Scholar 

  231. 231.

    L. Stawarz, V. Petrosian, R.D. Blandford, Astrophys. J. 710, 236 (2010)

    ADS  Google Scholar 

  232. 232.

    R.A. Caballero-Lopez, H. Moraal, J. Geophys. Res. 109, A01101 (2004)

    ADS  Google Scholar 

  233. 233.

    L. Gleeson, W. Axford, Astrophys. J. 154, 1011 (1968)

    ADS  Google Scholar 

  234. 234.

    M. Molero, J. Casaus, C. Mana, M.A. Velasco, I. Gebauer, M. Graziani, M. Gervasi, G. La Vacca, P.G. Rancoita, arXiv:1910.06919v1, (15 Oct 2019)

  235. 235.

    E.A. Bogomolov et al., in Proceedings of the 16th International Cosmic Ray Conference, University of Tokio, Tokio, Japan 1, p. 330 (1979)

  236. 236.

    R.L. Golden, S. Horan, B.G. Mauger, G.D. Badhwar, J.L. Lacy, S.A. Stephens, R.R. Daniel, J.E. Zipse, Phys. Rev. Lett 43, 1196 (1979)

    ADS  Google Scholar 

  237. 237.

    A. Buffington, S.M. Shindler, Astrophys. J. 247, L105 (1981)

    ADS  Google Scholar 

  238. 238.

    K. Yoshimura et al., Phys. Rev. Lett. 75, 3792 (1995)

    ADS  Google Scholar 

  239. 239.

    S. Orito et al., Phys. Rev. Lett. 84, 1078 (2000)

    ADS  Google Scholar 

  240. 240.

    Y. Asaoka et al., Phys. Rev. Lett. 88, 051101 (2002)

    ADS  Google Scholar 

  241. 241.

    K. Abe et al., Phys. Lett. B 670, 103 (2008)

    ADS  Google Scholar 

  242. 242.

    M. Boezio et al., Astrophys. J. 487, 415 (1997)

    ADS  Google Scholar 

  243. 243.

    M. Boezio et al., Astrophys. J. 561, 787 (2001)

    ADS  Google Scholar 

  244. 244.

    A.S. Beach et al., Phys. Rev. Lett. 87, 271101 (2001)

    Google Scholar 

  245. 245.

    O. Adriani et al., Phys. Rev. Lett. 102, 051101 (2009)

    ADS  Google Scholar 

  246. 246.

    O. Adriani et al., Phys. Rev. Lett. 105, 121101 (2010)

    ADS  Google Scholar 

  247. 247.

    O. Adriani et al., JETP Lett. 96, 621 (2013)

    ADS  Google Scholar 

  248. 248.

    C.S. Shen, G.B. Berkey, Phys. Rev. 171, 1344 (1968)

    ADS  Google Scholar 

  249. 249.

    M. Simon, A. Molnar, S. Roesler, Astrophys. J. 499, 250 (1998)

    ADS  Google Scholar 

  250. 250.

    I.V. Moskalenko, A.W. Strong, J.F. Ormes, M.S. Potgieter, Astrophys. J. 565, 280 (2002)

    ADS  Google Scholar 

  251. 251.

    V.S. Ptuskin, I.V. Moskalenko, F.C. Jones, A.W. Strong, V.N. Zirakashvili, Astrophys. J. 642, 902 (2006)

    ADS  Google Scholar 

  252. 252.

    F. Donato, D. Maurin, P. Brun, T. Delahaye, P. Salati, Phys. Rev. Lett. 102, 071301 (2009)

    ADS  Google Scholar 

  253. 253.

    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996)

    ADS  Google Scholar 

  254. 254.

    L. Bergström, Rep. Prog. Phys. 63, 793 (2000)

    ADS  Google Scholar 

  255. 255.

    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)

    ADS  Google Scholar 

  256. 256.

    P. Blasi, P.D. Serpico, Phys. Rev. Lett. 103, 081103 (2009)

    ADS  Google Scholar 

  257. 257.

    Y. Fujita, K. Kohri, R. Yamazaki, K. Ioka, Phys. Rev. D 80, 063003 (2009)

    ADS  Google Scholar 

  258. 258.

    S.W. Hawking, Nature (London) 248, 30 (1974)

    ADS  Google Scholar 

  259. 259.

    P. Kiraly, J. Szabelski, J. Wdowczyk, A.W. Wolfendale, Nature (London) 293, 120 (1981)

    ADS  Google Scholar 

  260. 260.

    L. Feng, R.-Z. Yang, H.-N. He, T.-K. Dong, Y.-Z. Fan, J. Chang, Phys. Lett. B 728, 250 (2014)

    ADS  Google Scholar 

  261. 261.

    L. Bergström, T. Bringmann, I. Cholis, D. Hooper, C. Weniger, Phys. Rev. Lett. 111, 171101 (2013)

    ADS  Google Scholar 

  262. 262.

    H.B. Jin, Y.L. Wu, Y.-F. Zhou, Phys. Rev. D 92, 055027 (2015)

    ADS  Google Scholar 

  263. 263.

    I. Cholis, D. Hooper, Phys. Rev. D 88, 023013 (2013)

    ADS  Google Scholar 

  264. 264.

    K. Kohri, K. Ioka, Y. Fujita, R. Yamazaki, Prog. Theor. Exp. Phys. 2016, 021E01 (2016)

  265. 265.

    R. Kappl, M.W. Winkler, J. Cosmol. Astropart. Phys. 09, 051 (2014)

    ADS  Google Scholar 

  266. 266.

    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)

  267. 267.

    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    ADS  Google Scholar 

  268. 268.

    P.A.M. Dirac, Proceedings of the Royal Society A: Mathematical. Phys. Eng. Sci. 117(778), 610–624 (1928)

    Google Scholar 

  269. 269.

    V. Poulin et al., Phys. Rev. D 99, 023016 (2019)

    ADS  MathSciNet  Google Scholar 

  270. 270.

    Y.-C. Ding, JCAP 06(2019), 004 (2019)

    ADS  Google Scholar 

  271. 271.

    K. Abe at al (BESS Collaboration), 2008, Phys. Lett. B 670 (2)

  272. 272.

    J. Alcaraz et al., (AMS-01 Collaboration), Phys. Lett. B 461, 387 and references (1999)

  273. 273.

    O. Adriani et al., PAMELA Collaboration. Phys. Rep. 544, 323–370 (2014)

    ADS  Google Scholar 

  274. 274.

    A.G. Cohen et al., Astrophys. J. 495, 539 (1998)

    ADS  Google Scholar 

  275. 275.

    A.D. Sakharov, JTEP Lett. 5, 24 (1967)

    ADS  Google Scholar 

  276. 276.

    C. Bambi, A.D. Dolgov, Nucl. Phys. B 784, 132 (2007)

    ADS  Google Scholar 

  277. 277.

    A. D. Dolgov, Gravitation, Astrophysics, and Cosmology, pp. 168-175 (2016)

  278. 278.

    A. Kounine, PoS (ICRC2017) 1093 (2017)

  279. 279.

    T. Aramaki et al., Phys. Rept. 618(7), 1–37 (2016)

    ADS  Google Scholar 

  280. 280.

    M. Cirelli et al., JHEP 1408, 009 (2014)

    ADS  Google Scholar 

  281. 281.

    E. Carlson et al., Phys. Rev. D 89, 076005 (2014)

    ADS  Google Scholar 

  282. 282.

    A. Coogan, S. Profumo, Phys. Rev. D 96, 083020 (2017)

    ADS  Google Scholar 

  283. 283.

    A. Cuoco et al., Phys. Rev. Lett. 118, 191102 (2017)

    ADS  Google Scholar 

  284. 284.

    M. Korsmeier et al., Phys. Rev. D 97(10), 103011 (2018)

    ADS  Google Scholar 

  285. 285.

    E.N. Parker, Planet. Space Sci. 13, 9 (1965)

    ADS  Google Scholar 

  286. 286.

    D.H. Hathaway, Living Rev. Solar Phys. 12, 4 (2015)

    ADS  Google Scholar 

  287. 287.

    M. Zhang, Adv. Space Res. 32, 603 (2003)

    ADS  Google Scholar 

  288. 288.

    H.V. Cane, Space Sci. Rev. 93, 55 (2000)

    ADS  Google Scholar 

  289. 289.

    M.S. Potgieter, J.A. Le Roux, L.F. Burlaga, F.B. McDonald, Astrophys. J. 403, 760 (1993)

    ADS  Google Scholar 

  290. 290.

    G. Wibberenz, I.G. Richardson, H.V. Cane, J. Geophys. Res. 107, 1353 (2002)

    Google Scholar 

  291. 291.

    I. Cholis, D. Hooper, T. Linden, Phys. Rev. D 93, 043016 (2016)

    ADS  Google Scholar 

  292. 292.

    C. Corti, V. Bindi, C. Consolandi, K. Whitman, Astrophys. J. 829, 8 (2016)

    ADS  Google Scholar 

  293. 293.

    M. J. Boschini, S. Della Torre, M. Gervasi, G. La Vacca, P. G. Rancoita, Adv. Space Res., https://doi.org/10.1016/j.asr.2017.04.017(2017)

  294. 294.

    J. Gieseler, B. Heber, K. Herbst, J. Geophys. Res. Space Phys. 122, 10964 (2017)

    ADS  Google Scholar 

  295. 295.

    N. Tomassetti, M. Orcinha, F. Barão, B. Bertucci, Astrophys. J. Lett. 849, L32 (2017)

    ADS  Google Scholar 

  296. 296.

    E.E. Vos, M.S. Potgieter, Astrophys. J. 815, 119 (2015)

    ADS  Google Scholar 

  297. 297.

    M.J. Boschini et al., Astrophys. J. 840, 115 (2017)

    ADS  Google Scholar 

  298. 298.

    N. Tomassetti, Phys. Rev. D 96, 103005 (2017)

    ADS  Google Scholar 

  299. 299.

    P.M. O’Neill, I.E.E.E. Trans, Nucl. Sci. 57, 3148 (2010)

    Google Scholar 

  300. 300.

    L.W. Townsend, F.A. Cucinotta, J.W. Wilson, J.L. Shinn, G. Badhwar, Adv. Space Res. 14, 853 (1994)

    ADS  Google Scholar 

  301. 301.

    P. Kühl, R. Gomez-Herrero, B. Heber, Sol. Phys. 291, 965 (2016)

    ADS  Google Scholar 

  302. 302.

    We acknowledge the NMDB database at http://www.nmdb.eu, founded under the European Union’s FP7 program, Contract No. 213007, for providing data

  303. 303.

    Sunspot data from the World Data Center SILSO, Royal Observatory of Belgium, Brussels at http://www.sidc.be/silso/datafiles

  304. 304.

    X. Sun, J.T. Hoeksema, Y. Liu, J. Zhao, Astrophys. J. 798, 114 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Alessandro Bettini for inviting me to write this review of the AMS-02 results and for his patience in accepting the many requests for extending the deadline for the paper: this time has not passed in vain, since the new AMS-02 results published in the meantime contributed to enrich the content of the review. A very special thank goes to Sam Ting for his exceptional leadership and for the lasting support the AMS collaboration has received from DoE and NASA: a quarter of a century after our initial meetings at CERN, the AMS-02 detector, recently refurbished by the outstanding work of Luca Parmitano and Drew Morgan on the ISS, is ready for to another ten years of data taking and new exciting physics results. It has been a privilege for me to spend a substantial part of my scientific career closely collaborating with Sam. The review is based on AMS-02 published data and on many discussions with the analysis teams: this work would not have been possible without the dedication and the competence of the members of the AMS-02 Collaboration. Outstanding scientists, engineers and technicians who have made possible the construction of AMS-02 in Institutes and Laboratories located in 16 countries, in particular in Italy, China, France, Germany, Spain, Switzerland and US, its integration and operations at CERN and the sophisticated, massive data analysis which has produced the wealth of new results in cosmic ray physics on which this review is based. NASA has been essential to allow for the qualification, deployment and continued operations of the AMS-02 detector on the ISS. CERN has been key for hosting the AMS collaboration during the integration phase and for the extended period of operations. This review work has been partially supported by INFN and ASI: during all these years their support to the Italian AMS teams has been essential for the success of AMS-02 and it is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Battiston.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Battiston, R. High precision cosmic ray physics with AMS-02 on the International Space Station. Riv. Nuovo Cim. 43, 319–384 (2020). https://doi.org/10.1007/s40766-020-00007-2

Download citation

Keywords

  • Cosmic ray
  • dark matter
  • antimatter
  • International Space Station
  • particle physics