Skip to main content
Log in

Abstract

Fractals describe many natural phenomena; their strong visual-figurative nature found its mathematical conceptualization in the concept of self-similarity. In the current study, we investigate how students construct (fully or partially) the self-similarity concept while recursively constructing the Sierpiński triangle, working in small group and whole class settings in an inquiry-based MA level mathematics education course. We follow shifts of knowledge from individuals to groups and/or to the whole class community during the process of constructing the self-similarity concept. Our theoretical and methodological approach is based on networking between Abstraction in Context and Documenting Collective Activity. We found that the knowledge constructing processes of different students varied, some thinking recursively about finite cases and others thinking more directly about the infinite case. Some students acted as knowledge agents, with shifts of knowledge occasionally occurring in chains. We also observed a tendency to report results of group discussions back to the plenum only partially and in a purified manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bloch, I., & Gibel, P. (2011). Un modèle d’analyse des raisonnements dans les situations didactiques. Étude des niveaux de preuves dans une situation d’enseignement de la notion de limite. (A model for analyzing the reasoning produced in didactic situations: A study of different levels of proof in teaching the concept of limit). Recherches en didactique des mathématiques, 31(2), 191–228.

    Google Scholar 

  • Cobb, P., Stephan, M., MacClain, K., & Gravemeijer, K. (2001). Participating in mathematical practices. The Journal of Learning Sciences, 10(1/2), 113–163. https://doi.org/10.1207/S15327809JLS10-1-2_6

    Article  Google Scholar 

  • Davydov, V. V. (1990). Soviet studies in mathematics education: Vol. 2. Types of generalization in instruction: Logical and psychological problems in the structuring of school curricula (J. Kilpatrick, Ed., & J. Teller, Trans.). National Council of Teachers of Mathematics. [Original work published in 1972]

  • Devaney, R. L. (1990). Chaos, fractals and dynamics – computer experiments in mathematics. Addison-Wesley.

    Google Scholar 

  • Devaney, R. L. (1998). Chaos in the classroom. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space. Lawrence Erlbaum Associates.

  • Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2015). The nested epistemic actions model for abstraction in context - Theory as methodological tool and methodological tool as theory. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 185–217). Springer.

    Chapter  Google Scholar 

  • Dreyfus, T., Rasmussen, C., Apkarian, N., & Tabach, M. (2018). The complexity of knowledge construction in a classroom setting. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild & N. M. Hogstad (Eds.), Proceedings of the second conference of the International Network for Didactic Research in University Mathematics (INDRUM2018, 5–7 April 2018) (pp. 286–295). University of Agder and INDRUM.

  • Feldman, D. P. (2012). Chaos and fractals – an elementary introduction. Oxford University Press.

    Book  Google Scholar 

  • Goldenberg, E. P. (1989). Seeing beauty in mathematics: Using fractal geometry to build a spirit of mathematical inquiry. Journal of Mathematical Behavior, 8, 169–204.

    Google Scholar 

  • Hershkowitz, R., & Schwarz, B. B. (1999). Reflective processes in a technology-based mathematics classroom. Cognition and Instruction, 17(1), 65–91. https://doi.org/10.1207/s1532690xci1701_3

    Article  Google Scholar 

  • Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in Context: Epistemic Actions. Journal for Research in Mathematics Education, 32(2), 195–222.

    Article  Google Scholar 

  • Hershkowitz, R., Tabach, M., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts in a probability classroom – A case study coordinating two methodologies. ZDM - Mathematics Education, 46(3), 363–387. https://doi.org/10.1007/s11858-014-0576-0

    Article  Google Scholar 

  • Laursen, S. L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129–146. https://doi.org/10.1007/s40753-019-00085-6

    Article  Google Scholar 

  • Lauwerier, H. (1991). Fractals – endlessly repeated geometrical figures. Princeton University.

  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636–638. https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  • Mandelbrot, B. (1983). The fractal geometry of nature. Freeman.

    Book  Google Scholar 

  • Mason, J. (2021). Learning about noticing, by, and through, noticing. ZDM - Mathematics Education, 53(1), 231–243. https://doi.org/10.1007/s11858-020-01192-4

    Article  Google Scholar 

  • Monaghan, J. (2001). Young people’s ideas of infinity. Educational Studies in Mathematics, 48(2–3), 239–257. https://doi.org/10.1023/A:1016090925967

    Article  Google Scholar 

  • Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Fractals for the classroom, Part 1. Springer.

    Book  Google Scholar 

  • Pontecorvo, C., & Girardet, H. (1993). Arguing and reasoning in understanding historical topics. Cognition and Instruction, 11(3–4), 365–395. https://doi.org/10.1080/07370008.1993.9649030

    Article  Google Scholar 

  • Rasmussen, C., & Stephan, M. (2008). A methodology for documenting collective activity. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching (pp. 195–215). Routledge.

    Google Scholar 

  • Sacristán, A. I. (2001). Students' shifting conceptions of the infinite through computer explorations of fractals and other visual models. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education, Vol. 4 (pp. 129–136). PME.

  • Sacristán, A. I. (2005). Exploring infinite processes through Logo programming activities of recursive and fractal figures. Eurologo, Warsaw.

  • Sacristán, A. I., & Noss, R. (2008). Computational construction as a means to coordinate representations of infinity. International Journal of Computers for Mathematical Learning, 13(1), 47–70. https://doi.org/10.1007/s10758-008-9127-5

    Article  Google Scholar 

  • Schroeder, M. (2009). Fractals, chaos, power laws – minutes from an infinite paradise. Dover.

    Google Scholar 

  • Sierpiński, W. (1915). Sur une courbe dont tout point est un point de ramification. Comptes rendus de l’académie des sciences à Paris, 160, 302–305.

    Google Scholar 

  • Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM - Mathematics Education, 48(5), 691–719. https://doi.org/10.1007/s11858-016-0796-6

    Article  Google Scholar 

  • Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations. Journal of Mathematical Behavior, 21(4), 459–490. https://doi.org/10.1016/S0732-3123(02)00145-1

    Article  Google Scholar 

  • Tabach, M., Hershkowitz, R., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts in the classroom – A case study. Journal of Mathematical Behavior, 33, 192–208. https://doi.org/10.1016/j.jmathb.2013.12.001

    Article  Google Scholar 

  • Tabach, M., Rasmussen, C., Dreyfus, T., & Apkarian, N. (2020). Towards argumentative grammars for networking: A case of coordinating two approaches. Educational Studies in Mathematics, 103(2), 139–155. https://doi.org/10.1007/s10649-020-09934-7

    Article  Google Scholar 

  • Toulmin, S. (1969). The uses of argument. Cambridge University Press.

    Google Scholar 

  • Treffers, A., & Goffree, F. (1985). Rational analysis of realistic mathematics education – The Wiskobas program. In L. Streefland (Ed.), Proceedings of the 9th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 97–121). OW&OC.

  • Zaslavsky, O., & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317–346.

    Google Scholar 

  • Zeitler, H., & Neidhardt, W. (1993). Fraktale und Chaos, eine Einführung. Wissenschaftliche Buchgesellschaft. [In German]

Download references

Acknowledgements

We are grateful to the editor and the anonymous reviewers for their constructive comments. In particular, Reviewer 4 has helped us significantly to improve the historical background on the notions of self-similarity and fractals.

Funding

This study was supported by the Israel Science Foundation under grant No. 438/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Tabach.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hershkowitz, R., Dreyfus, T. & Tabach, M. Constructing the Self-similarity Concept. Int. J. Res. Undergrad. Math. Ed. 9, 322–349 (2023). https://doi.org/10.1007/s40753-022-00173-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40753-022-00173-0

Keywords

Navigation