Skip to main content
Log in

Duos of Digital and Tangible Artefacts in Didactical Situations

  • Published:
Digital Experiences in Mathematics Education Aims and scope Submit manuscript

Abstract

The duo of artefacts is a simplified model of the complex systems of various manipulatives (either tangible or virtual) that mathematics teachers and their students use in classrooms. It offers a means to study the complexity of the interweaving of the tangible and of the digital worlds in the teaching and learning processes. A duo of artefacts is defined as a specific combination of complementarities, redundancies and antagonisms between a tangible artefact and a digital artefact in a didactical situation. It is designed to provoke a joint instrumental genesis regarding both artefacts, and to control some of the schemes and mathematical conceptualizations developed by pupils during its use. This article exemplifies the model of a duo of artefacts, in the case of the pascaline and the e·pascaline for the learning of place-value base 10 notation of numbers. It details the design process of the e·pascaline (given the pascaline and its complementarities, redundancies and antagonisms), resulting from feedback of the digital environment and haptic properties of the tangible one. It provides examples of the evolution of pupils’ conceptions of numbers when using the duo. It also shows how teachers transform the duo into a system of instruments, allowing them to manage the problem-solving strategies of their students, providing them with one or the other artefact, playing with their complementarities and antagonisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. 6- and 7-year-old students, the first two levels of French compulsory schooling.

  2. The MMI is an exhibition and mediation center for mathematics and computer science in Lyon.

References

  • Abrahamson, D. (2019). A new world: Educational research on the sensorimotor roots of mathematical reasoning. In A. Shvarts (Ed.), Proceedings of the annual meeting of the Russian chapter of the International Group for the Psychology of Mathematics Education (PME) & Yandex (pp. 48–68). Moscow: Yandex.

    Google Scholar 

  • Balacheff, N. (1993). Artificial intelligence and mathematics education: Expectations and questions. In A. Herrington (Ed.), Proceedings of the14th Biennial of the Australian Association of Mathematics Teachers Biennial of the Australian Association of Mathematics Teachers (pp. 1–24). Perth: Curtin University.

    Google Scholar 

  • Balacheff, N. (2017). cK¢, a model to understand learners’ understanding: Discussing the case of functions. El Cálculo y su Enseñanza, Enseñanza de las Ciencias y la Matemática, vol. 9, pp. 1–23. Ciudad de México: Cinestav-IPN.

  • Bourmaud, G. (2007). L’organisation systémique des instruments: Méthodes d’analyse, propriétés et perspectives de conception ouvertes. In Colloque de l’Association pour la Recherche Cognitive (ARCo’07) (pp. 61–76). Nancy: Arco–INRIA–EKOS.

  • Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactiques des mathématiques, 1970–1990. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • CanaliniCorpacci, R., & Maschietto, M. (2012). Gliartefatti–strumenti e la comprensionedellanotazioneposizionalenellascuolaprimaria. La ‘pascalina’ Zero+1 e sistema di strumenti per la notazioneposizionale. Insegnamentodellamatematica e dellescienze integrate, 35A(1), 33–58.

    Google Scholar 

  • Gattegno, C., & Cuisenaire, G. (1962). Initiation à la méthode: Les nombres en couleurs (Nouvelle édition). Neuchâtel: DelachauxetNiestlé.

    Google Scholar 

  • Gitirana, V., Miyakawa, T., Rafalska, M., Soury–Lavergne, S., & Trouche, L. (Eds) (2018). Proceedings of the Res(s)ources 2018 International Conference. Lyon: ENS de Lyon.

  • Gueudet, G., & Trouche, L. (2012). Teachers’ work with resources: Documentational geneses and professional geneses. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 23–41). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Houdement, C., & Tempier, F. (2019). Understanding place value with numeration units. ZDM: Mathematics Education, 51(1), 25–37.

    Article  Google Scholar 

  • Kuhn, T. (1990). La tension essentielle: Tradition et changement dans les sciences (M. Biezunski, P. Jacob, A. Lyotard-May & G. Voyat, Trans.). Paris: Gallimard.

  • Laborde, J.-M. (2016). Technology-enhanced teaching/learning at a new level with dynamic mathematics as implemented in the new Cabri. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 53–74). Charlotte: Information Age Publishing.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Mackrell, K., Maschietto, M., & Soury-Lavergne, S. (2013). The interaction between task design and technology design in creating tasks with Cabri Elem. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (vol. 1, pp. 81–90). Oxford: ICMI. Retrieved March 1, 2021 from https://hal.archives-ouvertes.fr/file/index/docid/837488/filename/ICMI_STudy_22_proceedings_2013-FINAL_V2.pdf.

  • Manches, A., O’Malley, C., & Benford, S. (2010). The role of physical representations in solving number problems: A comparison of young children’s use of physical and virtual materials. Computers & Education, 54(3), 622–640.

    Article  Google Scholar 

  • Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: The pascaline and Cabri Elem e-books in primary school mathematics. ZDM: The International Journal on Mathematics Education, 45(7), 959–971.

    Article  Google Scholar 

  • Maschietto, M., & Soury-Lavergne, S. (2017). The duo “pascaline and e–pascaline”: An example of using material and digital artefacts at primary school. In E. Faggiano, F. Ferrara, & A. Montone (Eds.), Innovation and technology enhancing mathematics education: Perspectives in the digital era (pp. 137–160). Cham: Springer.

    Chapter  Google Scholar 

  • Montessori, M. (1958). Pédagogiescientifique: La découverte de l’enfant. Paris: Desclée De Brouwer.

    Google Scholar 

  • Moyer-Packenham, P., Bolyard, J., & Spikell, M. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Article  Google Scholar 

  • Moyer-Packenham, P. (2016). Revisiting the definition of a virtual manipulative. In P. Moyer-Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manipulatives (pp. 3–23). Heidelberg: Springer.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes & les technologies: Approche cognitive des instruments contemporains. Malakoff: Armand Colin.

    Google Scholar 

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691.

    Article  Google Scholar 

  • Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., & Silverman, B. (1998). Digital manipulatives: New toys to think with. In Proceedings of theCHI ’98 conference, (pp. 281–287). New York: ACM Press.

  • Sarama, J., & Clements, D. (2016). Physical and virtual manipulatives: What is “concrete”? In P. Moyer-Packenham (Ed.), International Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives (pp. 71–93). Heidelberg: Springer.

    Google Scholar 

  • Soury-Lavergne, S. (2017). Duos d’artefacts tangibles et numériques et objets connectés pour apprendre et faire apprendre les mathématiques. [Mémoire d'Habilitation à Diriger les Recherches, ENS de Lyon]. Retrieved March 1, 2021 from https://hal.inria.fr/tel-01610658/.

  • Soury-Lavergne, S., & Maschietto, M. (2013). A la découverte de la « pascaline » pour l’apprentissage de la numération décimale. In C. Ouvrier-Buffet (Éd.), XXXIXe colloque de la COPIRELEM Faire des mathématiques à l’école : De la formation des enseignants à l’activité de l’élève.

  • Soury-Lavergne, S., & Maschietto, M. (2015). Number system and computation with a duo of artefacts: The pascaline and the e–pascaline. In X. Sun, B. Kaur, & J. Novotná (Eds.), Primary mathematics study on whole numbers: Proceedings of ICMI study 23 (pp. 371–378). Macau: ICMI.

    Google Scholar 

  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.

    Article  Google Scholar 

  • Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal of Mathematical Behavior, 11(1), 3–33.

    Google Scholar 

  • Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83–94.

    Article  Google Scholar 

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.

    Article  Google Scholar 

  • Voltolini, A. (2018). Duo of digital and material artefacts dedicated to the learning of geometry at primary school. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education: Tools, topics and trends (pp. 83–99). Cham: Springer.

    Chapter  Google Scholar 

  • Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Soury-Lavergne.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soury-Lavergne, S. Duos of Digital and Tangible Artefacts in Didactical Situations. Digit Exp Math Educ 7, 1–21 (2021). https://doi.org/10.1007/s40751-021-00086-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40751-021-00086-8

Keywords

Navigation