Abstract
Purpose
Adrenal androgens like dehydroepiandrosterone (DHEA) are important to numerous aspects of health and psychosocial stress physiology. DHEA is responsive to stress, and previous studies have shown chronic stress can be associated with a reduction in DHEA. However, the large majority of this work has been conducted in resource-rich, industrialized societies, with few studies examining how adrenal androgens respond to stressors in environments with persistent resource related concerns. Here we examine the relationships between androgens and chronic psychosocial stress in a sample of Himba pastoralists, in order to determine the relationship between DHEA and stress in a resource-limited environment.
Methods
We assayed DHEA and testosterone in 122 afternoon saliva samples from 46 Himba women aged 18–66, median age 30. Women also completed a chronic psychosocial stress survey, which included social, health, and resource related stressors reported over the past thirty days.
Results
DHEA concentrations show a curvilinear relationship with age, peaking in the mid-30s; testosterone was relatively flat across the life course. DHEA, but not testosterone, was negatively associated with chronic stress scores. In a comparison of question types, resource-related stressors showed the strongest relationship with DHEA.
Conclusion
Our results support findings from previous studies conducted in industrialized societies, showing that chronic stress is associated with a reduction in DHEA concentrations. In contrast, salivary testosterone appears unrelated to chronic stress. Given the associations between DHEA and other aspects of health, better understanding of drivers of DHEA variability can elucidate linkages between stressors and health outcomes.
Similar content being viewed by others
Data Availability
The data generated and analyzed during the current study are available on OSF at https://osf.io/p8b6u/.
References
Aoki, K., & Terauchi, Y. (2018). Effect of Dehydroepiandrosterone (DHEA) on diabetes mellitus and obesity. In Vitamins and Hormones (Vol. 108, pp. 355–365). Elsevier. https://doi.org/10.1016/bs.vh.2018.01.008
Arnetz, J., Sudan, S., Goetz, C., Counts, S., & Arnetz, B. (2019). Nurse work environment and stress biomarkers: Possible implications for patient outcomes. Journal of Occupational and Environmental Medicine, 61(8), 676. https://doi.org/10.1097/JOM.0000000000001642
Barrett, E. S., Tran, V., Thurston, S., Jasienska, G., Furberg, A.-S., Ellison, P. T., & Thune, I. (2013). Marriage and motherhood are associated with lower testosterone concentrations in women. Hormones and Behavior, 63(1), 72–79. https://doi.org/10.1016/j.yhbeh.2012.10.012
Bauer, M. E., Jeckel, C. M. M., & Luz, C. (2009). The role of stress factors during aging of the immune system. Annals of the New York Academy of Sciences, 1153(1), 139–152. https://doi.org/10.1111/j.1749-6632.2008.03966.x
Bollig, M. (1998). The colonial encapsulation of the north-western Namibian pastoral economy. Africa, 68(4), 506–536.
Bollig, M. (2006). Risk management in a hazardous environment: A comparative study of two pastoral societies. Springer US. https://doi.org/10.1007/978-0-387-27582-6
Bollig, M. (2023). Drought, disaster, and identity in north-western Namibia in times of global climate change. In Climate change epistemologies in Southern Africa (1st ed., pp. 27–48). Routledge. https://doi.org/10.4324/9781003180814-3
Brzoza, Z., Kasperska-Zajac, A., Badura-Brzoza, K., Matysiakiewicz, J., Hese, R. T., & Rogala, B. (2008). Decline in dehydroepiandrosterone sulfate observed in chronic Urticaria is associated with psychological distress. Psychosomatic Medicine, 70(6), 723–728. https://doi.org/10.1097/PSY.0b013e31817bcc8d
Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Campbell, B. C., Leslie, P., & Campbell, K. (2007). Age-related patterns of DHEAS among Turkana males of northern Kenya. The Aging Male, 10(4), 203–209. https://doi.org/10.1080/13685530701533151
Cardounel, A., Regelson, W., & Kalimi, M. (1999). Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: Mechanism of Action2. Proceedings of the Society for Experimental Biology and Medicine, 222(2), 145–149.
Chichinadze, K., & Chichinadze, N. (2008). Stress-induced increase of testosterone: Contributions of social status and sympathetic reactivity. Physiology & Behavior, 94(4), 595–603. https://doi.org/10.1016/j.physbeh.2008.03.020
Clark, B. J., Prough, R. A., & Klinge, C. M. (2018). Mechanisms of action of dehydroepiandrosterone. In Vitamins and hormones (Vol. 108, pp. 29–73). Elsevier. https://doi.org/10.1016/bs.vh.2018.02.003
Daly, W., Seegers, C. A., Rubin, D. A., Dobridge, J. D., & Hackney, A. C. (2005). Relationship between stress hormones and testosterone with prolonged endurance exercise. European Journal of Applied Physiology, 93(4), 375–380. https://doi.org/10.1007/s00421-004-1223-1
Davison, S. L., Bell, R., Donath, S., Montalto, J. G., & Davis, S. R. (2005). Androgen levels in adult females: Changes with age, menopause, and oophorectomy. The Journal of Clinical Endocrinology & Metabolism, 90(7), 3847–3853. https://doi.org/10.1210/jc.2005-0212
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355.
Dutheil, F., de Saint Vincent, S., Pereira, B., Schmidt, J., Moustafa, F., Charkhabi, M., et al. (2021). DHEA as a biomarker of stress: A systematic review and meta-analysis. Frontiers in Psychiatry, 12, 688367. https://doi.org/10.3389/fpsyt.2021.688367
Edwards, D. A., & Casto, K. V. (2015). Baseline cortisol moderates testosterone reactivity to women’s intercollegiate athletic competition. Physiology & Behavior, 142, 48–51. https://doi.org/10.1016/j.physbeh.2015.01.037
Ellison, P. T. (2002). Population variation in age-related decline in male salivary testosterone. Human Reproduction, 17(12), 3251–3253. https://doi.org/10.1093/humrep/17.12.3251
Firke, S. (2021). Janitor: Simple tools for examining and cleaning dirty data (version 2.2). https://CRAN.R-project.org/package=janitor
Gallagher, S., Sumner, R. C., Muldoon, O. T., Creaven, A.-M., & Hannigan, A. (2016). Unemployment is associated with lower cortisol awakening and blunted dehydroepiandrosterone responses. Psychoneuroendocrinology, 69, 41–49. https://doi.org/10.1016/j.psyneuen.2016.03.011
Gettler, L. T., McDade, T. W., Feranil, A. B., Agustin, S. S., & Kuzawa, C. W. (2014). Salivary estradiol and testosterone in filipino men: Diurnal patterns and relationships with adiposity: Male E2 and Adiposity. American Journal of Human Biology, 26(3), 376–383. https://doi.org/10.1002/ajhb.22528
Gettler, L. T., Sarma, M. S., Lew‐Levy, S., Bond, A., Trumble, B. C., & Boyette, A. H. (2019). Mothers’ and fathers’ joint profiles for testosterone and oxytocin in a small‐scale fishing‐farming community: Variation based on marital conflict and paternal contributions. Brain and Behavior, 9(9). https://doi.org/10.1002/brb3.1367
Gildner, T. E. (2021). Reproductive hormone measurement from minimally invasive sample types: Methodological considerations and anthropological importance. American Journal of Human Biology, 33(1). https://doi.org/10.1002/ajhb.23535
Goldey, K. L., & Van Anders, S. M. (2015). Sexual modulation of testosterone: Insights for humans from across species. Adaptive Human Behavior and Physiology, 1(2), 93–123. https://doi.org/10.1007/s40750-014-0005-1
Gonzales, G., Gonez, C., & Villena, A. (2002). Adrenopause or decline of serum adrenal androgens with age in women living at sea level or at high altitude. Journal of Endocrinology, 173(1), 95–101. https://doi.org/10.1677/joe.0.1730095
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with {lubridate}. Journal of Statistical Software, 40(3), 1–25.
Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocrine Reviews, 39(5), 803–829. https://doi.org/10.1210/er.2018-00020
Hazel, A., Meeks, G., Bharti, N., Jakurama, J., Matundu, J., & Jones, J. H. (2021). Opportunities and constraints in women’s resource security amid climate change: A case study of arid-living Namibian agro-pastoralists. American Journal of Human Biology, 33(4), e23633. https://doi.org/10.1002/ajhb.23633
Hazeldine, J., Arlt, W., & Lord, J. M. (2010). Dehydroepiandrosterone as a regulator of immune cell function. The Journal of Steroid Biochemistry and Molecular Biology, 120(2–3), 127–136.
Heaney, J. L. J., Phillips, A. C., & Carroll, D. (2012). Ageing, physical function, and the diurnal rhythms of cortisol and dehydroepiandrosterone. Psychoneuroendocrinology, 37(3), 341–349. https://doi.org/10.1016/j.psyneuen.2011.07.001
Helfrecht, C., Hagen, E. H., DeAvila, D., Bernstein, R. M., Dira, S. J., & Meehan, C. L. (2018). DHEAS patterning across childhood in three sub-Saharan populations: Associations with age, sex, ethnicity, and cortisol. American Journal of Human Biology, 30(2), e23090.
Helfrecht, C., Wang, H., Dira, S. J., DeAvila, D., & Meehan, C. L. (2023). DHEAS and nutritional status among Sidama, Ngandu, and Aka children: Effects of cortisol and implications for adrenarche. American Journal of Human Biology, 35(7), e23881. https://doi.org/10.1002/ajhb.23881
Hermans, E. J., Putman, P., Baas, J. M., Gecks, N. M., Kenemans, J. L., & Van Honk, J. (2007). Exogenous testosterone attenuates the integrated central stress response in healthy young women. Psychoneuroendocrinology, 32(8–10), 1052–1061. https://doi.org/10.1016/j.psyneuen.2007.08.006
Hucklebridge, F., Hussain, T., Evans, P., & Clow, A. (2005). The diurnal patterns of the adrenal steroids cortisol and dehydroepiandrosterone (DHEA) in relation to awakening. Psychoneuroendocrinology, 30(1), 51–57. https://doi.org/10.1016/j.psyneuen.2004.04.007
Inman, E. N., Hobbs, R. J., & Tsvuura, Z. (2020). No safety net in the face of climate change: The case of pastoralists in Kunene Region, Namibia. PLOS ONE, 15(9), e0238982. https://doi.org/10.1371/journal.pone.0238982
Izawa, S., Sugaya, N., Shirotsuki, K., Yamada, K. C., Ogawa, N., Ouchi, Y., et al. (2008). Salivary dehydroepiandrosterone secretion in response to acute psychosocial stress and its correlations with biological and psychological changes. Biological Psychology, 79(3), 294–298.
Jeckel, C. M. M., Lopes, R. P., Berleze, M. C., Luz, C., Feix, L., de Lima Argimon, I. I., et al. (2010). Neuroendocrine and immunological correlates of chronic stress in ‘Strictly Healthy’ populations. Neuroimmunomodulation, 17(1), 9–18. https://doi.org/10.1159/000243080
Joseph, J. J., & Golden, S. H. (2017). Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 1391(1), 20–34. https://doi.org/10.1111/nyas.13217
Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35(1), 2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002
Karishma, K. K., & Herbert, J. (2002). Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. European Journal of Neuroscience, 16(3), 445–453. https://doi.org/10.1046/j.1460-9568.2002.02099.x
Kay, M. (2020). tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151
Kimonides, V. G., Spillantini, M. G., Sofroniew, M. V., Fawcett, J. W., & Herbert, J. (1999). Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience, 89(2), 429–436.
Klinge, C. M., Clark, B. J., & Prough, R. A. (2018). Dehydroepiandrosterone research: Past, current, and future. In Vitamins and hormones (Vol. 108, pp. 1–28). Elsevier. https://doi.org/10.1016/bs.vh.2018.02.002
Kreuz, M. L. E. (1972). Suppression of plasma testosterone levels and psychological stress: A longitudinal study of young men in officer candidate school. Archives of General Psychiatry, 26(5), 479. https://doi.org/10.1001/archpsyc.1972.01750230089017
Labrie, F., Langer, A. B., Cusan, L., & Candas, B. (1997). Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. The Journal of Clinical Endocrinology & Metabolism, 82(8), 2396–2402.
Labrie, F., Luu-The, V., Labrie, C., Bélanger, A., Simard, J., Lin, S.-X., & Pelletier, G. (2003). Endocrine and intracrine sources of androgens in women: Inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocrine Reviews, 24(2), 152–182.
Labrie, F., Martel, C., & Balser, J. (2011). Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women: Role of the ovary? Menopause, 18(1), 30. https://doi.org/10.1097/gme.0b013e3181e195a6
Labrie, F. (2010). DHEA, important source of sex steroids in men and even more in women. In Progress in brain research (Vol. 182, pp. 97–148). Elsevier. https://doi.org/10.1016/S0079-6123(10)82004-7
Lac, G., Dutheil, F., Brousse, G., Triboulet-Kelly, C., & Chamoux, A. (2012). Saliva DHEAS changes in patients suffering from psychopathological disorders arising from bullying at work. Brain and Cognition, 80(2), 277–281.
Lennartsson, A.-K., Kushnir, M. M., Bergquist, J., Billig, H., & Jonsdottir, I. H. (2012). Sex steroid levels temporarily increase in response to acute psychosocial stress in healthy men and women. International Journal of Psychophysiology, 84(3), 246–253. https://doi.org/10.1016/j.ijpsycho.2012.03.001
Lennartsson, A.-K., Theorell, T., Kushnir, M. M., Bergquist, J., & Jonsdottir, I. H. (2013a). Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology, 38(9), 1650–1657. https://doi.org/10.1016/j.psyneuen.2013.01.010
Lennartsson, A.-K., Theorell, T., Rockwood, A. L., Kushnir, M. M., & Jonsdottir, I. H. (2013b). Perceived stress at work is associated with lower levels of DHEA-S. PLoS ONE, 8(8), e72460. https://doi.org/10.1371/journal.pone.0072460
Lennartsson, A.-K., Arvidson, E., Börjesson, M., & Jonsdottir, I. H. (2022). DHEA-S production capacity in relation to perceived prolonged stress. Stress, 25(1), 105–112. https://doi.org/10.1080/10253890.2021.2024803
Longcope, C. (1986). Adrenal and gonadal androgen secretion in normal females. Clinics in Endocrinology and Metabolism, 15(2), 213–228.
Lupien, S., Lecours, A., Lussier, I., Schwartz, G., Nair, N., & Meaney, M. (1994). Basal cortisol levels and cognitive deficits in human aging. The Journal of Neuroscience, 14(5), 2893–2903. https://doi.org/10.1523/JNEUROSCI.14-05-02893.1994
Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. R. (2018). Dehydroepiandrosterone and cardiovascular disease. In Vitamins and hormones (Vol. 108, pp. 333–353). Elsevier. https://doi.org/10.1016/bs.vh.2018.05.001
Markopoulou, K., Papadopoulos, A., Juruena, M. F., Poon, L., Pariante, C. M., & Cleare, A. J. (2009). The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology, 34(1), 19–26.
Mason, J., Tolson, W., Robinson, J., Brady, J., Tolliver, G., & Johnson, T. (1968). Urinary androsterone, etiocholanolone, and dehydroepiandrosterone responses to 72-hr. avoidance sessions in the monkey. Psychosomatic Medicine, 30(5), 710–720.
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904. https://doi.org/10.1152/physrev.00041.2006
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101.
Nafziger, A. N., Bowlin, S. J., Jenkins, P. L., & Pearson, T. A. (1998). Longitudinal changes in dehydroepiandrosterone concentrations in men and women. Journal of Laboratory and Clinical Medicine, 131(4), 316–323.
NHDR. (2019). UNDP Namibia Annual Report 2019.
Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. The Journal of Clinical Endocrinology & Metabolism, 59(3), 551–555. https://doi.org/10.1210/jcem-59-3-551
Pedersen, T. L. (2022). patchwork: The Composer of Plots (version 1.1.2). https://CRAN.R-project.org/package=patchwork
Peixoto, C., Carrilho, C. G., Barros, J. A., Ribeiro, T., Silva, L. M., Nardi, A. E., et al. (2017). The effects of dehydroepiandrosterone on sexual function: A systematic review. Climacteric, 20(2), 129–137.
Phillips, A. C., Carroll, D., Gale, C. R., Lord, J. M., Arlt, W., & Batty, G. D. (2010). Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. European Journal of Endocrinology, 163(2), 285–292.
Pluchino, N., Drakopoulos, P., Bianchi-Demicheli, F., Wenger, J. M., Petignat, P., & Genazzani, A. R. (2015). Neurobiology of DHEA and effects on sexuality, mood and cognition. The Journal of Steroid Biochemistry and Molecular Biology, 145, 273–280. https://doi.org/10.1016/j.jsbmb.2014.04.012
Powell, L. H., Lovallo, W. R., Matthews, K. A., Meyer, P., Midgley, A. R., Baum, A., et al. (2002). Physiologic markers of chronic stress in premenopausal middle-aged women. Psychosomatic Medicine, 64(3), 502–509. https://doi.org/10.1097/00006842-200205000-00015
Prall, S. P., & Scelza, B. A. (2020a). Why men invest in non-biological offspring: Paternal care and paternity confidence among Himba pastoralists. Proceedings of the Royal Society B: Biological Sciences, 287(1922), 20192890. https://doi.org/10.1098/rspb.2019.2890
Prall, S. P., & Scelza, B. A. (2020b). Resource demands reduce partner discrimination in Himba women. Evolutionary Human Sciences, 2, e45. https://doi.org/10.1017/ehs.2020.43
Prall, S. P., & Scelza, B. A. (2023). The dietary impacts of drought in a traditional pastoralist economy. American Journal of Human Biology, 35(1), e23803. https://doi.org/10.1002/ajhb.23803
Prall, S. P., Larson, E. E., & Muehlenbein, M. P. (2017). The role of dehydroepiandrosterone on functional innate immune responses to acute stress. Stress and Health, 33(5), 656–664.
Prall, S. P., Yetish, G., Scelza, B. A., & Siegel, J. M. (2018). The influence of age- and sex-specific labor demands on sleep in Namibian agropastoralists. Sleep Health, 4(6), 500–508. https://doi.org/10.1016/j.sleh.2018.09.012
Prall, S. P., & Muehlenbein, M. P. (2018). DHEA modulates immune function: A review of evidence. In Vitamins and hormones (Vol. 108, pp. 125–144). Elsevier. https://doi.org/10.1016/bs.vh.2018.01.023
Quinn, T., Greaves, R., Badoer, E., & Walker, D. (2018). DHEA in prenatal and postnatal life: Implications for brain and behavior. In Vitamins and hormones (Vol. 108, pp. 145–174). Elsevier. https://doi.org/10.1016/bs.vh.2018.03.001
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25. https://doi.org/10.18637/jss.v017.i05
Robinson, D., & Hayes, A. (2023). Broom: Convert statistical analysis objects into tidy tibbles (version 1.0.4). https://CRAN.R-project.org/package=broom
Scelza, B. A., Prall, S. P., & Levine, N. E. (2019). The disequilibrium of double descent: Changing inheritance norms among Himba pastoralists. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1780), 20180072. https://doi.org/10.1098/rstb.2018.0072
Scelza, B. A., Prall, S. P., & Starkweather, K. (2020). Paternity confidence and social obligations explain men’s allocations to romantic partners in an experimental giving game. Evolution and Human Behavior, 41(1), 96–103. https://doi.org/10.1016/j.evolhumbehav.2019.10.007
Scelza, B. A., Prall, S. P., & Starkweather, K. (2021). The Role of Spousal Separation on Norms Related to Gender and Sexuality among Himba Pastoralists. Social Sciences, 10(5), 174. https://doi.org/10.3390/socsci10050174
Stan Development Team. (2023). RStan: the R interface to Stan (version 2.21.8). http://mc-stan.org/
Šulcová, J., Hill, M., Hampl, R., & Starka, L. (1997). Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. Journal of Endocrinology, 154(1), 57–62.
Tobin, C. (2020). ggthemr: Themes for “ggplot2” (version 1.1). https://github.com/Mikata-Project/ggthemr
Traish, A. M., Kang, H. P., Saad, F., & Guay, A. T. (2011). Dehydroepiandrosterone (DHEA)—A Precursor Steroid or an Active Hormone in Human Physiology (CME). The Journal of Sexual Medicine, 8(11), 2960–2982. https://doi.org/10.1111/j.1743-6109.2011.02523.x
Trumble, B. C., Stieglitz, J., Jaeggi, A. V., Beheim, B., Schwartz, M., Seabright, E., et al. (2018). Parental hormones are associated with crop loss and family sickness following catastrophic flooding in lowland Bolivia. Physiology & Behavior, 193, 101–107. https://doi.org/10.1016/j.physbeh.2018.02.028
Urbanski, H. F. (2021). DHEA as a biomarker of aging in humans and nonhuman primates: synthesis, neuroprotection, and cognitive function. In C.R. Martin, V.R. Preedy, & R. Rajendram (Eds.), Assessments, Treatments and Modeling in Aging and Neurological Disease (pp. 269–278). Academic Press.
van Anders, S. M. (2013). Beyond masculinity: Testosterone, gender/sex, and human social behavior in a comparative context. Frontiers in Neuroendocrinology, 34(3), 198–210.
Vingren, J. L., Kraemer, W. J., Ratamess, N. A., Anderson, J. M., Volek, J. S., & Maresh, C. M. (2010). Testosterone physiology in resistance exercise and training: The up-stream regulatory elements. Sports Medicine, 40(12), 1037–1053. https://doi.org/10.2165/11536910-000000000-00000
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H. (2023). modelr: Modelling Functions that Work with the Pipe (version 0.1.11). https://CRAN.R-project.org/package=modelr
Wilke, C. (2017). Cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” (version 1.1.1). https://CRAN.R-project.org/package=cowplot
Wingfield, J. C., & Sapolsky, R. M. (2003). Reproduction and resistance to stress: When and how: Reproduction and resistance to stress. Journal of Neuroendocrinology, 15(8), 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x
Wolkowitz, O. M., Reus, V. I., Roberts, E., Manfredi, F., Chan, T., Raum, W. J., et al. (1997). Dehydroepiandrosterone (DHEA) treatment of depression. Biological Psychiatry, 41(3), 311–318. https://doi.org/10.1016/S0006-3223(96)00043-1
Acknowledgements
We would like to thank the community of Omuhonga for continued support and the individuals who participated in the study. J. Jakurama, G. Louis, and C. Louis acted as research assistants and translators in Namibia.
Funding
This work was funded by the National Science Foundation BCS-1534682 awarded to BS.
Author information
Authors and Affiliations
Contributions
S.P. and B.S. conducted the fieldwork and collected samples, and S.P. and B.T. conducted the laboratory analyses. S.P. analyzed the data, and wrote the manuscript with assistance from B.S. and B.T.
Corresponding author
Ethics declarations
Ethical Approval
Human subject permissions were issued by the UCLA Office of the Human Research Protection Program.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Prall, S., Scelza, B. & Trumble, B.C. Stress and Androgens in Himba Women. Adaptive Human Behavior and Physiology 9, 371–386 (2023). https://doi.org/10.1007/s40750-023-00227-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40750-023-00227-w