Skip to main content

Advertisement

Log in

Stress and Androgens in Himba Women

  • RESEARCH
  • Published:
Adaptive Human Behavior and Physiology Aims and scope Submit manuscript

Abstract

Purpose

Adrenal androgens like dehydroepiandrosterone (DHEA) are important to numerous aspects of health and psychosocial stress physiology. DHEA is responsive to stress, and previous studies have shown chronic stress can be associated with a reduction in DHEA. However, the large majority of this work has been conducted in resource-rich, industrialized societies, with few studies examining how adrenal androgens respond to stressors in environments with persistent resource related concerns. Here we examine the relationships between androgens and chronic psychosocial stress in a sample of Himba pastoralists, in order to determine the relationship between DHEA and stress in a resource-limited environment.

Methods

We assayed DHEA and testosterone in 122 afternoon saliva samples from 46 Himba women aged 18–66, median age 30. Women also completed a chronic psychosocial stress survey, which included social, health, and resource related stressors reported over the past thirty days.

Results

DHEA concentrations show a curvilinear relationship with age, peaking in the mid-30s; testosterone was relatively flat across the life course. DHEA, but not testosterone, was negatively associated with chronic stress scores. In a comparison of question types, resource-related stressors showed the strongest relationship with DHEA.

Conclusion

Our results support findings from previous studies conducted in industrialized societies, showing that chronic stress is associated with a reduction in DHEA concentrations. In contrast, salivary testosterone appears unrelated to chronic stress. Given the associations between DHEA and other aspects of health, better understanding of drivers of DHEA variability can elucidate linkages between stressors and health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data generated and analyzed during the current study are available on OSF at https://osf.io/p8b6u/.

References

  • Aoki, K., & Terauchi, Y. (2018). Effect of Dehydroepiandrosterone (DHEA) on diabetes mellitus and obesity. In Vitamins and Hormones (Vol. 108, pp. 355–365). Elsevier. https://doi.org/10.1016/bs.vh.2018.01.008

  • Arnetz, J., Sudan, S., Goetz, C., Counts, S., & Arnetz, B. (2019). Nurse work environment and stress biomarkers: Possible implications for patient outcomes. Journal of Occupational and Environmental Medicine, 61(8), 676. https://doi.org/10.1097/JOM.0000000000001642

    Article  Google Scholar 

  • Barrett, E. S., Tran, V., Thurston, S., Jasienska, G., Furberg, A.-S., Ellison, P. T., & Thune, I. (2013). Marriage and motherhood are associated with lower testosterone concentrations in women. Hormones and Behavior, 63(1), 72–79. https://doi.org/10.1016/j.yhbeh.2012.10.012

    Article  Google Scholar 

  • Bauer, M. E., Jeckel, C. M. M., & Luz, C. (2009). The role of stress factors during aging of the immune system. Annals of the New York Academy of Sciences, 1153(1), 139–152. https://doi.org/10.1111/j.1749-6632.2008.03966.x

    Article  Google Scholar 

  • Bollig, M. (1998). The colonial encapsulation of the north-western Namibian pastoral economy. Africa, 68(4), 506–536.

    Article  Google Scholar 

  • Bollig, M. (2006). Risk management in a hazardous environment: A comparative study of two pastoral societies. Springer US. https://doi.org/10.1007/978-0-387-27582-6

    Book  Google Scholar 

  • Bollig, M. (2023). Drought, disaster, and identity in north-western Namibia in times of global climate change. In Climate change epistemologies in Southern Africa (1st ed., pp. 27–48). Routledge. https://doi.org/10.4324/9781003180814-3

  • Brzoza, Z., Kasperska-Zajac, A., Badura-Brzoza, K., Matysiakiewicz, J., Hese, R. T., & Rogala, B. (2008). Decline in dehydroepiandrosterone sulfate observed in chronic Urticaria is associated with psychological distress. Psychosomatic Medicine, 70(6), 723–728. https://doi.org/10.1097/PSY.0b013e31817bcc8d

    Article  Google Scholar 

  • Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

    Article  Google Scholar 

  • Campbell, B. C., Leslie, P., & Campbell, K. (2007). Age-related patterns of DHEAS among Turkana males of northern Kenya. The Aging Male, 10(4), 203–209. https://doi.org/10.1080/13685530701533151

    Article  Google Scholar 

  • Cardounel, A., Regelson, W., & Kalimi, M. (1999). Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: Mechanism of Action2. Proceedings of the Society for Experimental Biology and Medicine, 222(2), 145–149.

    Article  Google Scholar 

  • Chichinadze, K., & Chichinadze, N. (2008). Stress-induced increase of testosterone: Contributions of social status and sympathetic reactivity. Physiology & Behavior, 94(4), 595–603. https://doi.org/10.1016/j.physbeh.2008.03.020

    Article  Google Scholar 

  • Clark, B. J., Prough, R. A., & Klinge, C. M. (2018). Mechanisms of action of dehydroepiandrosterone. In Vitamins and hormones (Vol. 108, pp. 29–73). Elsevier. https://doi.org/10.1016/bs.vh.2018.02.003

  • Daly, W., Seegers, C. A., Rubin, D. A., Dobridge, J. D., & Hackney, A. C. (2005). Relationship between stress hormones and testosterone with prolonged endurance exercise. European Journal of Applied Physiology, 93(4), 375–380. https://doi.org/10.1007/s00421-004-1223-1

    Article  Google Scholar 

  • Davison, S. L., Bell, R., Donath, S., Montalto, J. G., & Davis, S. R. (2005). Androgen levels in adult females: Changes with age, menopause, and oophorectomy. The Journal of Clinical Endocrinology & Metabolism, 90(7), 3847–3853. https://doi.org/10.1210/jc.2005-0212

    Article  Google Scholar 

  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355.

    Article  Google Scholar 

  • Dutheil, F., de Saint Vincent, S., Pereira, B., Schmidt, J., Moustafa, F., Charkhabi, M., et al. (2021). DHEA as a biomarker of stress: A systematic review and meta-analysis. Frontiers in Psychiatry, 12, 688367. https://doi.org/10.3389/fpsyt.2021.688367

    Article  Google Scholar 

  • Edwards, D. A., & Casto, K. V. (2015). Baseline cortisol moderates testosterone reactivity to women’s intercollegiate athletic competition. Physiology & Behavior, 142, 48–51. https://doi.org/10.1016/j.physbeh.2015.01.037

    Article  Google Scholar 

  • Ellison, P. T. (2002). Population variation in age-related decline in male salivary testosterone. Human Reproduction, 17(12), 3251–3253. https://doi.org/10.1093/humrep/17.12.3251

    Article  Google Scholar 

  • Firke, S. (2021). Janitor: Simple tools for examining and cleaning dirty data (version 2.2). https://CRAN.R-project.org/package=janitor

  • Gallagher, S., Sumner, R. C., Muldoon, O. T., Creaven, A.-M., & Hannigan, A. (2016). Unemployment is associated with lower cortisol awakening and blunted dehydroepiandrosterone responses. Psychoneuroendocrinology, 69, 41–49. https://doi.org/10.1016/j.psyneuen.2016.03.011

    Article  Google Scholar 

  • Gettler, L. T., McDade, T. W., Feranil, A. B., Agustin, S. S., & Kuzawa, C. W. (2014). Salivary estradiol and testosterone in filipino men: Diurnal patterns and relationships with adiposity: Male E2 and Adiposity. American Journal of Human Biology, 26(3), 376–383. https://doi.org/10.1002/ajhb.22528

    Article  Google Scholar 

  • Gettler, L. T., Sarma, M. S., Lew‐Levy, S., Bond, A., Trumble, B. C., & Boyette, A. H. (2019). Mothers’ and fathers’ joint profiles for testosterone and oxytocin in a small‐scale fishing‐farming community: Variation based on marital conflict and paternal contributions. Brain and Behavior, 9(9). https://doi.org/10.1002/brb3.1367

  • Gildner, T. E. (2021). Reproductive hormone measurement from minimally invasive sample types: Methodological considerations and anthropological importance. American Journal of Human Biology, 33(1). https://doi.org/10.1002/ajhb.23535

  • Goldey, K. L., & Van Anders, S. M. (2015). Sexual modulation of testosterone: Insights for humans from across species. Adaptive Human Behavior and Physiology, 1(2), 93–123. https://doi.org/10.1007/s40750-014-0005-1

    Article  Google Scholar 

  • Gonzales, G., Gonez, C., & Villena, A. (2002). Adrenopause or decline of serum adrenal androgens with age in women living at sea level or at high altitude. Journal of Endocrinology, 173(1), 95–101. https://doi.org/10.1677/joe.0.1730095

    Article  Google Scholar 

  • Grolemund, G., & Wickham, H. (2011). Dates and times made easy with {lubridate}. Journal of Statistical Software, 40(3), 1–25.

    Article  Google Scholar 

  • Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocrine Reviews, 39(5), 803–829. https://doi.org/10.1210/er.2018-00020

    Article  Google Scholar 

  • Hazel, A., Meeks, G., Bharti, N., Jakurama, J., Matundu, J., & Jones, J. H. (2021). Opportunities and constraints in women’s resource security amid climate change: A case study of arid-living Namibian agro-pastoralists. American Journal of Human Biology, 33(4), e23633. https://doi.org/10.1002/ajhb.23633

    Article  Google Scholar 

  • Hazeldine, J., Arlt, W., & Lord, J. M. (2010). Dehydroepiandrosterone as a regulator of immune cell function. The Journal of Steroid Biochemistry and Molecular Biology, 120(2–3), 127–136.

    Article  Google Scholar 

  • Heaney, J. L. J., Phillips, A. C., & Carroll, D. (2012). Ageing, physical function, and the diurnal rhythms of cortisol and dehydroepiandrosterone. Psychoneuroendocrinology, 37(3), 341–349. https://doi.org/10.1016/j.psyneuen.2011.07.001

    Article  Google Scholar 

  • Helfrecht, C., Hagen, E. H., DeAvila, D., Bernstein, R. M., Dira, S. J., & Meehan, C. L. (2018). DHEAS patterning across childhood in three sub-Saharan populations: Associations with age, sex, ethnicity, and cortisol. American Journal of Human Biology, 30(2), e23090.

    Article  Google Scholar 

  • Helfrecht, C., Wang, H., Dira, S. J., DeAvila, D., & Meehan, C. L. (2023). DHEAS and nutritional status among Sidama, Ngandu, and Aka children: Effects of cortisol and implications for adrenarche. American Journal of Human Biology, 35(7), e23881. https://doi.org/10.1002/ajhb.23881

    Article  Google Scholar 

  • Hermans, E. J., Putman, P., Baas, J. M., Gecks, N. M., Kenemans, J. L., & Van Honk, J. (2007). Exogenous testosterone attenuates the integrated central stress response in healthy young women. Psychoneuroendocrinology, 32(8–10), 1052–1061. https://doi.org/10.1016/j.psyneuen.2007.08.006

    Article  Google Scholar 

  • Hucklebridge, F., Hussain, T., Evans, P., & Clow, A. (2005). The diurnal patterns of the adrenal steroids cortisol and dehydroepiandrosterone (DHEA) in relation to awakening. Psychoneuroendocrinology, 30(1), 51–57. https://doi.org/10.1016/j.psyneuen.2004.04.007

    Article  Google Scholar 

  • Inman, E. N., Hobbs, R. J., & Tsvuura, Z. (2020). No safety net in the face of climate change: The case of pastoralists in Kunene Region, Namibia. PLOS ONE, 15(9), e0238982. https://doi.org/10.1371/journal.pone.0238982

    Article  Google Scholar 

  • Izawa, S., Sugaya, N., Shirotsuki, K., Yamada, K. C., Ogawa, N., Ouchi, Y., et al. (2008). Salivary dehydroepiandrosterone secretion in response to acute psychosocial stress and its correlations with biological and psychological changes. Biological Psychology, 79(3), 294–298.

    Article  Google Scholar 

  • Jeckel, C. M. M., Lopes, R. P., Berleze, M. C., Luz, C., Feix, L., de Lima Argimon, I. I., et al. (2010). Neuroendocrine and immunological correlates of chronic stress in ‘Strictly Healthy’ populations. Neuroimmunomodulation, 17(1), 9–18. https://doi.org/10.1159/000243080

    Article  Google Scholar 

  • Joseph, J. J., & Golden, S. H. (2017). Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 1391(1), 20–34. https://doi.org/10.1111/nyas.13217

    Article  Google Scholar 

  • Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35(1), 2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002

    Article  Google Scholar 

  • Karishma, K. K., & Herbert, J. (2002). Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. European Journal of Neuroscience, 16(3), 445–453. https://doi.org/10.1046/j.1460-9568.2002.02099.x

    Article  Google Scholar 

  • Kay, M. (2020). tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151

  • Kimonides, V. G., Spillantini, M. G., Sofroniew, M. V., Fawcett, J. W., & Herbert, J. (1999). Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience, 89(2), 429–436.

    Article  Google Scholar 

  • Klinge, C. M., Clark, B. J., & Prough, R. A. (2018). Dehydroepiandrosterone research: Past, current, and future. In Vitamins and hormones (Vol. 108, pp. 1–28). Elsevier. https://doi.org/10.1016/bs.vh.2018.02.002

  • Kreuz, M. L. E. (1972). Suppression of plasma testosterone levels and psychological stress: A longitudinal study of young men in officer candidate school. Archives of General Psychiatry, 26(5), 479. https://doi.org/10.1001/archpsyc.1972.01750230089017

    Article  Google Scholar 

  • Labrie, F., Langer, A. B., Cusan, L., & Candas, B. (1997). Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. The Journal of Clinical Endocrinology & Metabolism, 82(8), 2396–2402.

    Article  Google Scholar 

  • Labrie, F., Luu-The, V., Labrie, C., Bélanger, A., Simard, J., Lin, S.-X., & Pelletier, G. (2003). Endocrine and intracrine sources of androgens in women: Inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocrine Reviews, 24(2), 152–182.

    Article  Google Scholar 

  • Labrie, F., Martel, C., & Balser, J. (2011). Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women: Role of the ovary? Menopause, 18(1), 30. https://doi.org/10.1097/gme.0b013e3181e195a6

    Article  Google Scholar 

  • Labrie, F. (2010). DHEA, important source of sex steroids in men and even more in women. In Progress in brain research (Vol. 182, pp. 97–148). Elsevier. https://doi.org/10.1016/S0079-6123(10)82004-7

  • Lac, G., Dutheil, F., Brousse, G., Triboulet-Kelly, C., & Chamoux, A. (2012). Saliva DHEAS changes in patients suffering from psychopathological disorders arising from bullying at work. Brain and Cognition, 80(2), 277–281.

    Article  Google Scholar 

  • Lennartsson, A.-K., Kushnir, M. M., Bergquist, J., Billig, H., & Jonsdottir, I. H. (2012). Sex steroid levels temporarily increase in response to acute psychosocial stress in healthy men and women. International Journal of Psychophysiology, 84(3), 246–253. https://doi.org/10.1016/j.ijpsycho.2012.03.001

    Article  Google Scholar 

  • Lennartsson, A.-K., Theorell, T., Kushnir, M. M., Bergquist, J., & Jonsdottir, I. H. (2013a). Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology, 38(9), 1650–1657. https://doi.org/10.1016/j.psyneuen.2013.01.010

    Article  Google Scholar 

  • Lennartsson, A.-K., Theorell, T., Rockwood, A. L., Kushnir, M. M., & Jonsdottir, I. H. (2013b). Perceived stress at work is associated with lower levels of DHEA-S. PLoS ONE, 8(8), e72460. https://doi.org/10.1371/journal.pone.0072460

    Article  Google Scholar 

  • Lennartsson, A.-K., Arvidson, E., Börjesson, M., & Jonsdottir, I. H. (2022). DHEA-S production capacity in relation to perceived prolonged stress. Stress, 25(1), 105–112. https://doi.org/10.1080/10253890.2021.2024803

    Article  Google Scholar 

  • Longcope, C. (1986). Adrenal and gonadal androgen secretion in normal females. Clinics in Endocrinology and Metabolism, 15(2), 213–228.

    Article  Google Scholar 

  • Lupien, S., Lecours, A., Lussier, I., Schwartz, G., Nair, N., & Meaney, M. (1994). Basal cortisol levels and cognitive deficits in human aging. The Journal of Neuroscience, 14(5), 2893–2903. https://doi.org/10.1523/JNEUROSCI.14-05-02893.1994

    Article  Google Scholar 

  • Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. R. (2018). Dehydroepiandrosterone and cardiovascular disease. In Vitamins and hormones (Vol. 108, pp. 333–353). Elsevier. https://doi.org/10.1016/bs.vh.2018.05.001

  • Markopoulou, K., Papadopoulos, A., Juruena, M. F., Poon, L., Pariante, C. M., & Cleare, A. J. (2009). The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology, 34(1), 19–26.

    Article  Google Scholar 

  • Mason, J., Tolson, W., Robinson, J., Brady, J., Tolliver, G., & Johnson, T. (1968). Urinary androsterone, etiocholanolone, and dehydroepiandrosterone responses to 72-hr. avoidance sessions in the monkey. Psychosomatic Medicine, 30(5), 710–720.

    Article  Google Scholar 

  • McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904. https://doi.org/10.1152/physrev.00041.2006

    Article  Google Scholar 

  • McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101.

    Article  Google Scholar 

  • Nafziger, A. N., Bowlin, S. J., Jenkins, P. L., & Pearson, T. A. (1998). Longitudinal changes in dehydroepiandrosterone concentrations in men and women. Journal of Laboratory and Clinical Medicine, 131(4), 316–323.

    Article  Google Scholar 

  • NHDR. (2019). UNDP Namibia Annual Report 2019.

  • Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. The Journal of Clinical Endocrinology & Metabolism, 59(3), 551–555. https://doi.org/10.1210/jcem-59-3-551

    Article  Google Scholar 

  • Pedersen, T. L. (2022). patchwork: The Composer of Plots (version 1.1.2). https://CRAN.R-project.org/package=patchwork

  • Peixoto, C., Carrilho, C. G., Barros, J. A., Ribeiro, T., Silva, L. M., Nardi, A. E., et al. (2017). The effects of dehydroepiandrosterone on sexual function: A systematic review. Climacteric, 20(2), 129–137.

    Article  Google Scholar 

  • Phillips, A. C., Carroll, D., Gale, C. R., Lord, J. M., Arlt, W., & Batty, G. D. (2010). Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. European Journal of Endocrinology, 163(2), 285–292.

    Article  Google Scholar 

  • Pluchino, N., Drakopoulos, P., Bianchi-Demicheli, F., Wenger, J. M., Petignat, P., & Genazzani, A. R. (2015). Neurobiology of DHEA and effects on sexuality, mood and cognition. The Journal of Steroid Biochemistry and Molecular Biology, 145, 273–280. https://doi.org/10.1016/j.jsbmb.2014.04.012

    Article  Google Scholar 

  • Powell, L. H., Lovallo, W. R., Matthews, K. A., Meyer, P., Midgley, A. R., Baum, A., et al. (2002). Physiologic markers of chronic stress in premenopausal middle-aged women. Psychosomatic Medicine, 64(3), 502–509. https://doi.org/10.1097/00006842-200205000-00015

    Article  Google Scholar 

  • Prall, S. P., & Scelza, B. A. (2020a). Why men invest in non-biological offspring: Paternal care and paternity confidence among Himba pastoralists. Proceedings of the Royal Society B: Biological Sciences, 287(1922), 20192890. https://doi.org/10.1098/rspb.2019.2890

    Article  Google Scholar 

  • Prall, S. P., & Scelza, B. A. (2020b). Resource demands reduce partner discrimination in Himba women. Evolutionary Human Sciences, 2, e45. https://doi.org/10.1017/ehs.2020.43

    Article  Google Scholar 

  • Prall, S. P., & Scelza, B. A. (2023). The dietary impacts of drought in a traditional pastoralist economy. American Journal of Human Biology, 35(1), e23803. https://doi.org/10.1002/ajhb.23803

    Article  Google Scholar 

  • Prall, S. P., Larson, E. E., & Muehlenbein, M. P. (2017). The role of dehydroepiandrosterone on functional innate immune responses to acute stress. Stress and Health, 33(5), 656–664.

    Article  Google Scholar 

  • Prall, S. P., Yetish, G., Scelza, B. A., & Siegel, J. M. (2018). The influence of age- and sex-specific labor demands on sleep in Namibian agropastoralists. Sleep Health, 4(6), 500–508. https://doi.org/10.1016/j.sleh.2018.09.012

    Article  Google Scholar 

  • Prall, S. P., & Muehlenbein, M. P. (2018). DHEA modulates immune function: A review of evidence. In Vitamins and hormones (Vol. 108, pp. 125–144). Elsevier. https://doi.org/10.1016/bs.vh.2018.01.023

  • Quinn, T., Greaves, R., Badoer, E., & Walker, D. (2018). DHEA in prenatal and postnatal life: Implications for brain and behavior. In Vitamins and hormones (Vol. 108, pp. 145–174). Elsevier. https://doi.org/10.1016/bs.vh.2018.03.001

  • R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

    Google Scholar 

  • Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25. https://doi.org/10.18637/jss.v017.i05

    Article  Google Scholar 

  • Robinson, D., & Hayes, A. (2023). Broom: Convert statistical analysis objects into tidy tibbles (version 1.0.4). https://CRAN.R-project.org/package=broom

  • Scelza, B. A., Prall, S. P., & Levine, N. E. (2019). The disequilibrium of double descent: Changing inheritance norms among Himba pastoralists. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1780), 20180072. https://doi.org/10.1098/rstb.2018.0072

    Article  Google Scholar 

  • Scelza, B. A., Prall, S. P., & Starkweather, K. (2020). Paternity confidence and social obligations explain men’s allocations to romantic partners in an experimental giving game. Evolution and Human Behavior, 41(1), 96–103. https://doi.org/10.1016/j.evolhumbehav.2019.10.007

    Article  Google Scholar 

  • Scelza, B. A., Prall, S. P., & Starkweather, K. (2021). The Role of Spousal Separation on Norms Related to Gender and Sexuality among Himba Pastoralists. Social Sciences, 10(5), 174. https://doi.org/10.3390/socsci10050174

    Article  Google Scholar 

  • Stan Development Team. (2023). RStan: the R interface to Stan (version 2.21.8). http://mc-stan.org/

  • Šulcová, J., Hill, M., Hampl, R., & Starka, L. (1997). Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. Journal of Endocrinology, 154(1), 57–62.

    Article  Google Scholar 

  • Tobin, C. (2020). ggthemr: Themes for “ggplot2” (version 1.1). https://github.com/Mikata-Project/ggthemr

  • Traish, A. M., Kang, H. P., Saad, F., & Guay, A. T. (2011). Dehydroepiandrosterone (DHEA)—A Precursor Steroid or an Active Hormone in Human Physiology (CME). The Journal of Sexual Medicine, 8(11), 2960–2982. https://doi.org/10.1111/j.1743-6109.2011.02523.x

    Article  Google Scholar 

  • Trumble, B. C., Stieglitz, J., Jaeggi, A. V., Beheim, B., Schwartz, M., Seabright, E., et al. (2018). Parental hormones are associated with crop loss and family sickness following catastrophic flooding in lowland Bolivia. Physiology & Behavior, 193, 101–107. https://doi.org/10.1016/j.physbeh.2018.02.028

    Article  Google Scholar 

  • Urbanski, H. F. (2021). DHEA as a biomarker of aging in humans and nonhuman primates: synthesis, neuroprotection, and cognitive function. In C.R. Martin, V.R. Preedy, & R. Rajendram (Eds.), Assessments, Treatments and Modeling in Aging and Neurological Disease (pp. 269–278). Academic Press.

  • van Anders, S. M. (2013). Beyond masculinity: Testosterone, gender/sex, and human social behavior in a comparative context. Frontiers in Neuroendocrinology, 34(3), 198–210.

    Article  Google Scholar 

  • Vingren, J. L., Kraemer, W. J., Ratamess, N. A., Anderson, J. M., Volek, J. S., & Maresh, C. M. (2010). Testosterone physiology in resistance exercise and training: The up-stream regulatory elements. Sports Medicine, 40(12), 1037–1053. https://doi.org/10.2165/11536910-000000000-00000

    Article  Google Scholar 

  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

  • Wickham, H. (2023). modelr: Modelling Functions that Work with the Pipe (version 0.1.11). https://CRAN.R-project.org/package=modelr

  • Wilke, C. (2017). Cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” (version 1.1.1). https://CRAN.R-project.org/package=cowplot

  • Wingfield, J. C., & Sapolsky, R. M. (2003). Reproduction and resistance to stress: When and how: Reproduction and resistance to stress. Journal of Neuroendocrinology, 15(8), 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x

    Article  Google Scholar 

  • Wolkowitz, O. M., Reus, V. I., Roberts, E., Manfredi, F., Chan, T., Raum, W. J., et al. (1997). Dehydroepiandrosterone (DHEA) treatment of depression. Biological Psychiatry, 41(3), 311–318. https://doi.org/10.1016/S0006-3223(96)00043-1

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the community of Omuhonga for continued support and the individuals who participated in the study. J. Jakurama, G. Louis, and C. Louis acted as research assistants and translators in Namibia.

Funding

This work was funded by the National Science Foundation BCS-1534682 awarded to BS.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and B.S. conducted the fieldwork and collected samples, and S.P. and B.T. conducted the laboratory analyses. S.P. analyzed the data, and wrote the manuscript with assistance from B.S. and B.T.

Corresponding author

Correspondence to Sean Prall.

Ethics declarations

Ethical Approval

Human subject permissions were issued by the UCLA Office of the Human Research Protection Program.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prall, S., Scelza, B. & Trumble, B.C. Stress and Androgens in Himba Women. Adaptive Human Behavior and Physiology 9, 371–386 (2023). https://doi.org/10.1007/s40750-023-00227-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-023-00227-w

Keywords

Navigation