Skip to main content

Genetically-predicted trait-BMI, everyday discrimination and life satisfaction among older U.S. adults

Abstract

Objectives

This study tested whether genetically predicted trait-body mass index (trait-BMI) was linked to more general daily discrimination among older adults, and consequently to decline in their life satisfaction.

Methods

Data were from the Health and Retirement Study, nationally representative of U.S. adults over 50. Genetic prediction models were used to extract the trait component of BMI, which was then deployed in regression models for discrimination. A recently developed “regression with residuals” approach was used to test associations with subsequent change in life satisfaction.

Results

Genetically predicted trait-BMI was linked to more general discrimination reports. It also had negative associations with change in life satisfaction—linkages not consistently or strongly mediated by discrimination.

Conclusions

Trait-BMI—arguably resistant to sustained alteration through individual efforts—seems linked to decline in older adults’ life satisfaction. General daily discrimination, however, may not be an important mechanism.

This is a preview of subscription content, access via your institution.

Data availability statement

The HRS data that support the findings of this study are available from the Institute for Social Research at the University of Michigan: https://hrs.isr.umich.edu/data-products.

References

  • Allison, D. B., Kaprio, J., Korkeila, M., Koskenvuo, M., Neale, M. C., & Hayakawa, K. (1996). The heritability of body mass index among an international sample of monozygotic twins reared apart. International Journal of Obesity, 20, 501–506

    Google Scholar 

  • Anderson, J. W., Konz, E. C., Frederich, R. C., & Wood, C. L. (2001). Long-term weight loss maintenance: A meta-analysis of U.S. studies. American Journal of Clinical Nutrition, 74, 579–584

    Article  Google Scholar 

  • Andreyeva, T., Puhl, R. M., & Brownell, K. D. (2008). Changes in perceived weight discrimination among Americans, 1995–1996 through 2004–2006. Obesity, 16, 1129–1134

    Article  Google Scholar 

  • Ayub, Q., Moutsianas, L., Chen, Y., Panoutsopoulou, K., Colonna, V., Pagani, L. … Xue, Y. (2014). Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. American Journal of Human Genetics, 94, 176–185

    Article  Google Scholar 

  • Barton, N., Hermisson, J., & Nordborg, M. (2019). Why structure matters: Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies. eLife, 8, art. no. e45380

  • Bauman, A., Merom, D., Bull, F. C., Buchner, D. M., & Fiatarone Singh, M. A. (2016). Updating the evidence for physical activity: Summative reviews of the epidemiological evidence, prevalence, and interventions to promote “active aging. Gerontologist, 56, S268–S280

    Article  Google Scholar 

  • Brewis, A. A., Hruschka, D. J., & Wutich, A. (2011). Vulnerability to fat-stigma in women’s everyday relationships. Social Science and Medicine, 73, 491–497

    Article  Google Scholar 

  • Brewis, A. A., & Wutich, A. (2014). A world of suffering? Biocultural approaches to fat stigma in the global contexts of the obesity epidemic. Annals of Anthropological Practice, 38, 269–283

    Article  Google Scholar 

  • Burgess, S., Foley, C. N., Allara, E., Staley, J. R., & Howson, J. M. M. (2020). A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nature Communications, 11, 376

    Article  Google Scholar 

  • Cheesman, R., Selzam, S., Ronald, A., Dale, P. S., McAdams, T. A., Eley, T. C., & Plomin, R. (2017). Childhood behaviour problems show the greatest gap between DNA-based and twin heritability. Translational Psychiatry, 7, art. no. 1284

  • Chrisler, J. C. (2012). “Why can’t you control yourself?” Fat should be a feminist issue. Sex Roles, 66, 608–616

    Article  Google Scholar 

  • Conley, D., & Zhang, S. (2018). The promise of genes for understanding cause and effect. Proceedings of the National Academy of Sciences of the United States of America, 115, 5626–5628

    Article  Google Scholar 

  • Daufin, E. K. (2019). Thick sistahs and heavy disprivilege: Black women, intersectionality, and weight stigma. In M. Friedman, C. Rice, & J. Rinaldi (Eds.), Thickening fat: Fat bodies, intersectionality, and social justice (pp. 160–170). Milton Park, UK: Routledge

    Chapter  Google Scholar 

  • Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. Journal of Personality Assessment, 49, 71–75

    Article  Google Scholar 

  • Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125, 276–302

    Article  Google Scholar 

  • Domingue, B. W., Belsky, D. W., Harrati, A., Conley, D., Weir, D. R., & Boardman, J. D. (2017). Mortality selection in a genetic sample and implications for association studies. International Journal of Epidemiology, 46, 1285–1294

    Article  Google Scholar 

  • Domingue, B. W., Trejo, S., Armstrong-Carter, E., & Tucker-Drob, E. M. (2020). Interactions between polygenic scores and environments: Methodological and conceptual challenges. Sociological Science, 7, 465–486

    Article  Google Scholar 

  • Duncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M. … Domingue, B. (2019). Analysis of polygenic risk score usage and performance in diverse human populations. Nature Communications, 10, art. no. 3328

  • Farrell, A. E. (2011). Fat shame: Stigma and the fat body in American culture. New York: NYU Press

    Google Scholar 

  • Fikkan, J., & Rothblum, E. D. (2011). Is fat a feminist issue? Exploring the gendered nature of weight bias. Sex Roles, 66, 575–592

    Article  Google Scholar 

  • Geiser, C., Keller, B. T., Lockhart, G., Eid, M., Cole, D. A., & Koch, T. (2015). Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses. Behavior Research Methods, 47, 172–203

    Article  Google Scholar 

  • Goldberg, D. S. (2014). Fatness, medicalization, and stigma: On the need to do better. Narrative Inquiry in Bioethics, 4, 117–123

    Article  Google Scholar 

  • Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: attitudes, self-esteem, and stereotypes. Psychological review, 102, 4

    Article  Google Scholar 

  • Guo, G., Liu, H., Wang, L., Shen, H., & Hu, W. (2015). The genome-wide influence on human BMI depends on physical activity, life course, and historical period. Demography, 52, 1651–1670

    Article  Google Scholar 

  • Hall, K. D., & Guo, J. (2017). Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology, 152, 1718–1727

    Article  Google Scholar 

  • Hebebrand, J., Peters, T., Schijven, D., Hebebrand, M., Grasemann, C., Winkler, T. W. … Libuda, L. (2018). The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Molecular Metabolism, 12, 1–11

    Article  Google Scholar 

  • Higginson, A. D., McNamara, J. M., & Houston, A. I. (2016). Fatness and fitness: Exposing the logic of evolutionary explanations for obesity. Proceedings of the Royal Society B: Biological Sciences, 283, 1–9

  • Jackson, S. E., & Steptoe, A. (2017). Association between perceived weight discrimination and physical activity: A population-based study among English middle-aged and older adults. British Medical Journal Open, 7, e014592

    Google Scholar 

  • Khan, L. K., Sobush, K., Keener, D., Goodman, K., Lowry, A., Kakietek, J., & Zaro, S. (2009). Recommended community strategies and measurements to prevent obesity in the United States. Morbidity and Mortality Weekly Report, 58, 1–26

    Google Scholar 

  • Kivimäki, M., Jokela, M., & Batty, G. D. (2011). Does obesity really protect against psychological distress? Examining the ‘fat-jolly’ versus ‘fat-sad’ hypotheses using Mendelian randomization. Journal of Internal Medicine, 269, 519–520

    Article  Google Scholar 

  • Kuzawa, C. W., & Thayer, Z. M. (2011). Timescales of human adaptation: The role of epigenetic processes. Epigenomics, 3, 221–234

    Article  Google Scholar 

  • Labrecque, J. A., & Swanson, S. A. (2019). Interpretation and potential biases of Mendelian randomization estimates with time-varying exposures. American Journal of Epidemiology, 188, 231–238

    Article  Google Scholar 

  • Lawlor, D. A., Harbord, R. M., Tybjaerg-Hansen, A., Palmer, T. M., Zacho, J., Benn, M. … Nordestgaard, B. G. (2011). Using genetic loci to understand the relationship between adiposity and psychological distress: A Mendelian Randomization study in the Copenhagen General Population Study of 53221 adults. Journal of Internal Medicine, 269, 525–537

    Article  Google Scholar 

  • Liu, H., & Guo, G. (2015). Lifetime socioeconomic status, historical context, and genetic inheritance in shaping body mass in middle and late adulthood. American Sociological Review, 80, 705–737

    Article  Google Scholar 

  • Lobstein, T., Baur, L., & Uauy, R. (2004). Obesity in children and young people: A crisis in public health. Obesity Reviews, Supplement, 5, 4–104

    Article  Google Scholar 

  • Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R. … Croteau-chonka, D. C. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197–206

    Article  Google Scholar 

  • Murillo, A. L., Kaiser, K. A., Smith, D. L. Jr., Peterson, C. M., Affuso, O., Tiwari, H. K., & Allison, D. B. (2019). A systematic scoping review of surgically manipulated adipose tissue and the regulation of energetics and body fat in animals. Obesity, 27, 1404–1417

    Article  Google Scholar 

  • Nagata, J. M., Braudt, D. B., Domingue, B. W., Bibbins-Domingo, K., Garber, A. K., Griffiths, S., & Murray, S. B. (2019). Genetic risk, body mass index, and weight control behaviors: Unlocking the triad. International Journal of Eating Disorders, 52, 825–833

    Article  Google Scholar 

  • Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. Behavioral Ecology, 15, 1044–1045

    Article  Google Scholar 

  • Nesselroade, J. R. (1991). The warp and the woof of the developmental fabric. In R. M. Downs, & L. S. Liben (Eds.), Visions of aesthetics, the environment & development: The legacy of Joachim F. Wohlwill (pp. 213–240). Hillsdale, NJ: Erlbaum

    Google Scholar 

  • Okbay, A., Baselmans, B. M. L., De Neve, J. E., Turley, P., Nivard, M. G., Fontana, M. A., et al. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 624–633

    Article  Google Scholar 

  • Pearl, J. (2009). Causality: Models, reasoning, and inference. New York: Cambridge University Press

    Book  Google Scholar 

  • Puhl, R. M., Andreyeva, T., & Brownell, K. D. (2008). Perceptions of weight discrimination: Prevalence and comparison to race and gender discrimination in America. International Journal of Obesity, 32, 992–1000

    Article  Google Scholar 

  • Puhl, R. M., Himmelstein, M. S., & Pearl, R. L. (2020). Weight stigma as a psychosocial contributor to obesity. The American Psychologist, 75, 274–289

    Article  Google Scholar 

  • Saguy, A. (2012). Why fat is a feminist issue. Sex Roles, 66, 600–607

    Article  Google Scholar 

  • Smith, C. A. (2012). The confounding of fat, control, and physical attractiveness for women. Sex Roles, 66, 628–631

    Article  Google Scholar 

  • Smith, G. D., & Ebrahim, S. (2003). ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 1–22

    Article  Google Scholar 

  • Speakman, J. R. (2007). A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metabolism, 6, 5–12

    Article  Google Scholar 

  • Speakman, J. R. (2008). Thrifty genes for obesity, an attractive but flawed idea and an alternative perspective: The ‘drifty gene’ hypothesis. International Journal of Obesity, 32, 1611–1617

    Article  Google Scholar 

  • Speakman, J. R. (2018). The evolution of body fatness: Trading off disease and predation risk. Journal of Experimental Biology, 121, art. no. 167254

  • Spencer, E. A., Appleby, P. N., Davey, G. K., & Key, T. J. (2002). Validity of self-reported height and weight in 4808 EPIC-Oxford participants. Public Health Nutrition, 5, 561–565

    Article  Google Scholar 

  • Stewart, A. L. (1982). The reliability and validity of self-reported weight and height. Journal of Chronic Diseases, 35, 295–309

    Article  Google Scholar 

  • Sun, B., Perkins, N. J., Cole, S. R., Harel, O., Mitchell, E. M., Schisterman, E. F., & Tchetgen, T., E. J (2018). Inverse-probability-weighted estimation for monotone and nonmonotone missing data. American Journal of Epidemiology, 187, 585–591. doi:https://doi.org/10.1093/aje/kwx350

    Article  Google Scholar 

  • Sutin, A. R. (2013). Optimism, pessimism and bias in self-reported body weight among older adults. Obesity, 21, E508–E511

    Article  Google Scholar 

  • Sutin, A. R., & Terracciano, A. (2013). Perceived weight discrimination and obesity. PLoS ONE, 8, e70048

    Article  Google Scholar 

  • Thorpe, M. G., Milte, C. M., Crawford, D., & McNaughton, S. A. (2019). Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutrition Journal, 18, art. no. 67

  • Tomiyama, A. J., Carr, D., Granberg, E. M., Major, B., Robinson, E., Sutin, A. R., & Brewis, A. (2018). How and why weight stigma drives the obesity ‘epidemic’ and harms health. BMC Medicine, 16, art. no. 123

  • Trejo, S., & Domingue, B. W. (2019). Genetic nature or genetic nurture? Quantifying bias in analyses using polygenic scores. BioRxiv 069187 [Preprint]. January 28, 2019. Available from: https://doi.org/10.1101/524850

  • VanderWeele, T. (2015). Explanation in causal inference: Methods for mediation and interaction. New York, NY: Oxford University Press

    Google Scholar 

  • Wang, G., & Speakman, J. R. (2016). Analysis of positive selection at single nucleotide polymorphisms associated with body mass index does not support the “thrifty gene” hypothesis. Cell Metabolism, 24, 531–541

    Article  Google Scholar 

  • Ware, E., Schmitz, L., Gard, A., & Faul, J. (2018). HRS polygenic scores—Release 3: 2006–2012 genetic data. Ann Arbor, MI: Survey Research Center, University of Michigan

    Google Scholar 

  • Weuve, J., Tchetgen Tchetgen, E. J., Glymour, M. M., Beck, T. L., Aggarwal, N. T., Wilson, R. S., et al. (2012). Accounting for bias due to selective attrition: The example of smoking and cognitive decline. Epidemiology, 23, 119–128

    Article  Google Scholar 

  • Winkler, T. W., Justice, A. E., Graff, M., Barata, L., Feitosa, M. F., Chu, S. … Loos, R. J. F. (2015). The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study. PLoS Genetics, 11, 1–42

    Article  Google Scholar 

  • Wirtshafter, D., & Davis, J. D. (1977). Set points, settling points, and the control of body weight. Physiology and Behavior, 19, 75–78

    Article  Google Scholar 

  • Wodtke, G. T., Alaca, Z., & Zhou, X. (2020). Regression-with-residuals estimation of marginal effects. Journal of the Royal Statistical Society Series A, 183, 311–332

    Article  Google Scholar 

  • Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A. … Bacanu, S. A. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50, 668–681

    Article  Google Scholar 

  • Xie, Y., Brand, J. E., & Jann, B. (2012). Estimating heterogeneous treatment effects with observational data. Sociological Methodology, 42, 314–347

    Article  Google Scholar 

  • Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A. E., Lee, S. H. … Visscher, P. M. (2015). Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics, 47, 1114–1120

    Article  Google Scholar 

  • Young, A. I., Benonisdottir, S., Przeworski, M., & Kong, A. (2019). Deconstructing the sources of genotype-phenotype associations in humans. Science, 365, 1396–1400

    Article  Google Scholar 

  • Zhao, W., Ware, E. B., He, Z., Kardia, S. L. R., Faul, J. D., & Smith, J. A. (2017). Interaction between social/psychosocial factors and genetic variants on body mass index: A gene-environment interaction analysis in a longitudinal setting. International Journal of Environmental Research and Public Health, 14, art. no. 1153

  • Zhou, X., & Xie, Y. (2020). Heterogeneous treatment effects in the presence of self-selection: A propensity score perspective. Sociological Methodology, 50, 350–385

    Article  Google Scholar 

  • Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine ghrelin system. Trends in Endocrinology and Metabolism, 27, 54–63

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Das Ph.D..

Ethics declarations

Conflict of interest

Aniruddha Das declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, A. Genetically-predicted trait-BMI, everyday discrimination and life satisfaction among older U.S. adults. Adaptive Human Behavior and Physiology 8, 179–201 (2022). https://doi.org/10.1007/s40750-022-00189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-022-00189-5

Keywords

  • trait-BMI
  • Polygenic scores
  • Life satisfaction
  • Older adults
  • Regression with residuals