Skip to main content

Advertisement

Log in

The Skeletal Muscle Response to Energy Deficiency: A Life History Perspective

  • Commentary
  • Published:
Adaptive Human Behavior and Physiology Aims and scope Submit manuscript

Abstract

Energy is a finite resource that is competitively distributed among the body’s systems and biological processes. During times of scarcity, energetic “trade-offs” may arise if less energy is available than is required to optimally sustain all systems. More immediately essential functions are predicted to be prioritized, even if this necessitates the diversion of energy away from – and potential downregulation of – others. These concepts are encompassed within life history theory, an evolutionary framework with considerable potential to enhance understanding of the evolved biological response to periods of energy deficiency. Skeletal muscle is a particularly interesting tissue to investigate from this perspective, given that it is one of the largest and most energetically costly tissues within the body. It is also highly plastic, responsive to a broad range of stimuli, and contributes to many essential bodily functions, e.g., mechanical, regulatory and storage. These functions may be traded off against each other during periods of energy deficiency, with the nature of the trade-off’s dependent on the characteristics of the individual and the circumstances within which the deficit occurs. In this review, we consider the skeletal muscle response to periods of energy deficiency from a life history perspective, along with how this response may be influenced by factors including sex, age, body composition, training and nutritional status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. The studies cited throughout this review use a range of terms and assessments of muscle mass and its main proxies, including lean mass and fat-free mass, with the most common assessment type being DXA. Although these outcomes are distinct from each other, the skeletal muscle comprises the major portion of both lean and fat-free mass, and is the most plastic element, meaning that any changes recorded in these outcomes are likely reflective of skeletal muscle mass changes. For this reason and for improved readability, we will use the term skeletal muscle mass throughout.

References

  • Ansdell, P., Thomas, K., Hicks, K. M., Hunter, S. K., Howatson, G., & Goodall, S. (2020). Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Experimental Physiology, 105(12), 2007–2021. https://doi.org/10.1113/EP088548

    Article  Google Scholar 

  • Areta, J. L., Burke, L. M., Camera, D. M., West, D. W., Crawshay, S., Moore, D. R., & Coffey, V. G. (2014). Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. The American Journal of Physiology-Endocrinology and Metabolism, 306(8), E989-997. https://doi.org/10.1152/ajpendo.00590.2013

    Article  Google Scholar 

  • Atherton, P. J., Smith, K., Etheridge, T., Rankin, D., & Rennie, M. J. (2010). Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids, 38(5), 1533–1539. https://doi.org/10.1007/s00726-009-0377-x

    Article  Google Scholar 

  • Baar, K. (2014). Using molecular biology to maximize concurrent training. Sports Medicine, 44 Suppl(2), S117-125. https://doi.org/10.1007/s40279-014-0252-0

    Article  Google Scholar 

  • Bahwere, P., Balaluka, B., Wells, J. C., Mbiribindi, C. N., Sadler, K., Akomo, P., & Collins, S. (2016). Cereals and pulse-based ready-to-use therapeutic food as an alternative to the standard milk- and peanut paste-based formulation for treating severe acute malnutrition: a noninferiority, individually randomized controlled efficacy clinical trial. The American Journal of Clinical Nutrition, 103(4), 1145–1161. https://doi.org/10.3945/ajcn.115.119537

    Article  Google Scholar 

  • Balogun, S., Aitken, D., Winzenberg, T., Wills, K., Scott, D., Callisaya, M., & Jones, G. (2018). Longitudinal associations of serum 25-hydroxyvitamin d, physical activity, and knee pain and dysfunction with muscle loss in community-dwelling older adults. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 73(4), 526–531. https://doi.org/10.1093/gerona/glx157

    Article  Google Scholar 

  • Berryman, C. E., Young, A. J., Karl, J. P., Kenefick, R. W., Margolis, L. M., Cole, R. E., & Pasiakos, S. M. (2018). Severe negative energy balance during 21 d at high altitude decreases fat-free mass regardless of dietary protein intake: a randomized controlled trial. The FASEB Journal, 32(2), 894–905. https://doi.org/10.1096/fj.201700915R

    Article  Google Scholar 

  • Carbone, J. W., McClung, J. P., & Pasiakos, S. M. (2019). Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Advances in Nutrition, 10(1), 70–79. https://doi.org/10.1093/advances/nmy087

    Article  Google Scholar 

  • Carbone, J. W., Pasiakos, S. M., Vislocky, L. M., Anderson, J. M., & Rodriguez, N. R. (2014). Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Applied Physiology, Nutrition, and Metabolism, 39(8), 960–968. https://doi.org/10.1139/apnm-2013-0433

    Article  Google Scholar 

  • Chaston, T. B., Dixon, J. B., & O’Brien, P. E. (2007). Changes in fat-free mass during significant weight loss: a systematic review. International Journal of Obesity (London), 31(5), 743–750. https://doi.org/10.1038/sj.ijo.0803483

    Article  Google Scholar 

  • Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of Physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270

    Article  Google Scholar 

  • Cox, R. M.  (2010). Body size and sexual dimorphism. In M. D. Breed, & J. Moore (Eds.), Encyclopedia of Animal Behavior (pp. 220–225). Academic

  • Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyere, O., Cederholm, T. … Zamboni, M., P. Writing Group for the European Working Group on Sarcopenia in Older and E. the Extended Group for (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 48(1):16–31. https://doi.org/10.1093/ageing/afy169

  • Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., & Rennie, M. J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB Journal, 19(3), 422–424. https://doi.org/10.1096/fj.04-2640fje

    Article  Google Scholar 

  • de Santana, F. M., Domiciano, D. S., Goncalves, M. A., Machado, L. G., Figueiredo, C. P., Lopes, J. B., & Pereira, R. M. (2019). Association of appendicular lean mass, and subcutaneous and visceral adipose tissue with mortality in older Brazilians: The Sao Paulo ageing & health study. The Journal of Bone and Mineral Research, 34(7), 1264–1274. https://doi.org/10.1002/jbmr.3710

    Article  Google Scholar 

  • De Souza, M. J., Koltun, K. J., & Williams, N. I. (2019). The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: an initial working model of a similar syndrome in male athletes. Sports Medicine, 49(Suppl 2), 125–137. https://doi.org/10.1007/s40279-019-01217-3

    Article  Google Scholar 

  • De Souza, M. J., West, S. L., Jamal, S. A., Hawker, G. A., Gundberg, C. M., & Williams, N. I. (2008). The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone, 43(1), 140–148. https://doi.org/10.1016/j.bone.2008.03.013

    Article  Google Scholar 

  • Deutz, R. C., Benardot, D., Martin, D. E., & Cody, M. M. (2000). Relationship between energy deficits and body composition in elite female gymnasts and runners. Medicine & Science in Sports & Exercise, 32(3), 659–668. https://doi.org/10.1097/00005768-200003000-00017

    Article  Google Scholar 

  • Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35(3): 125-129. https://doi.org/10.2307/4444260%J

  • Elia, M. (1992). Organ and tissue contribution to metabolic rate. Energy Metabolism: Tissue Determinants and Cellular Corollaries (pp. 61–80). R. Press

    Google Scholar 

  • Elia, M., Stubbs, R. J., & Henry, C. J. (1999). Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obesity Research, 7(6), 597–604. https://doi.org/10.1002/j.1550-8528.1999.tb00720.x

    Article  Google Scholar 

  • Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15(3), 342–351. https://doi.org/10.1002/ajhb.10152

    Article  Google Scholar 

  • Fabiansen, C., Phelan, K. P. Q., Cichon, B., Yameogo, C. W., Iuel-Brockdorff, A. S., Kurpad, A. … Friis, H. (2018). Short malnourished children and fat accumulation with food supplementation. Pediatrics, 142(3). https://doi.org/10.1542/peds.2018-0679

  • FAO, I., & WFP and WHO. (2021). The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. FAO. https://doi.org/10.4060/cb4474en

  • Flatt, T., & Heyland, A. (2011). Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs. Oxford University Press

  • Forbes, G. B. (2000). Body fat content influences the body composition response to nutrition and exercise. Annals of the New York Academy of Sciences, 904, 359–365. https://doi.org/10.1111/j.1749-6632.2000.tb06482.x

    Article  Google Scholar 

  • Fragala, M. S., Cadore, E. L., Dorgo, S., Izquierdo, M., Kraemer, W. J., Peterson, M. D., & Ryan, E. D. (2019). Resistance training for older adults: position statement from the national strength and conditioning association. The Journal of Strength and Conditioning Research, 33(8), 2019–2052. https://doi.org/10.1519/JSC.0000000000003230

    Article  Google Scholar 

  • Frayn, K. N., Karpe, F., Fielding, B. A., Macdonald, I. A., & Coppack, S. W. (2003). Integrative physiology of human adipose tissue. International Journal of Obesity and Related Metabolic Disorders, 27(8), 875–888. https://doi.org/10.1038/sj.ijo.0802326

    Article  Google Scholar 

  • Friedl, K. E., Kinney, J., Tucker, H. J. P. (1997). Stress & N. I. Malnutrition: Functional Correlates. Variability of fat and lean tissue loss during physical exertion with energy deficit, 431-450

  • Fukumoto, Y., Yamada, Y., Ikezoe, T., Watanabe, Y., Taniguchi, M., Sawano, S. … Ichihashi, N. (2018). Association of physical activity with age-related changes in muscle echo intensity in older adults: a 4-year longitudinal study. Journal of Applied Physiology (1985), 125(5), 1468–1474. https://doi.org/10.1152/japplphysiol.00317.2018

  • Garrow, J. S., & Summerbell, C. D. (1995). Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. European Journal of Clinical Nutrition, 49(1), 1–10

    Article  Google Scholar 

  • Goodpaster, B. H., Chomentowski, P., Ward, B. K., Rossi, A., Glynn, N. W., Delmonico, M. J., & Newman, A. B. (2008). Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. Journal of Applied Physiology (1985), 105(5), 1498–1503. https://doi.org/10.1152/japplphysiol.90425.2008

    Article  Google Scholar 

  • Hackney, A. C. (2020). Hypogonadism in exercising males: dysfunction or adaptive-regulatory adjustment? Frontiers in Endocrinology (Lausanne), 11, 11. https://doi.org/10.3389/fendo.2020.00011

    Article  Google Scholar 

  • Hansen-Smith, F. M., Picou, D., & Golden, M. H. (1979). Growth of muscle fibres during recovery from severe malnutrition in Jamaican infants. British Journal of Nutrition, 41(2), 275–282. https://doi.org/10.1079/bjn19790036

    Article  Google Scholar 

  • Hawkes, K., O’Connell, J. F., Jones, N. G. B., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, 95(3): 1336-1339. https://doi.org/10.1073/pnas.95.3.1336%J

  • Hector, A. J., Marcotte, G. R., Churchward-Venne, T. A., Murphy, C. H., Breen, L., von Allmen, M. … Phillips, S. M. (2015). Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. Journal of Nutrition, 145(2), 246–252. https://doi.org/10.3945/jn.114.200832

  • Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., & Phillips, S. M. (2018). Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. The FASEB Journal, 32(1), 265–275. https://doi.org/10.1096/fj.201700158RR

    Article  Google Scholar 

  • Helms, E. R., Zinn, C., Rowlands, D. S., & Brown, S. R. (2014). A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. International Journal of Sport Nutrition and Exercise Metabolism, 24(2), 127–138. https://doi.org/10.1123/ijsnem.2013-0054

    Article  Google Scholar 

  • Henry, C. J. K. (2001). The biology of human starvation: some new insights. 26(3), 205–211. https://doi.org/10.1046/j.1467-3010.2001.00164.x

  • Hodson, N., West, D. W. D., Philp, A., Burd, N. A., & Moore, D. R. (2019). Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. American Journal of Physiology-Cell Physiology, 317(6), C1061–C1078. https://doi.org/10.1152/ajpcell.00209.2019

    Article  Google Scholar 

  • Jasienska, G., Bribiescas, R. G., Furberg, A. S., Helle, S., & Nunez-de la, A. (2017). Human reproduction and health: an evolutionary perspective. The Lancet, 390(10093), 510–520. https://doi.org/10.1016/S0140-6736(17)30573-1

    Article  Google Scholar 

  • Josse, A. R., Atkinson, S. A., Tarnopolsky, M. A., & Phillips, S. M. (2011). Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. Journal of Nutrition, 141(9), 1626–1634. https://doi.org/10.3945/jn.111.141028

    Article  Google Scholar 

  • Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology and Metabolism, 89(6), 2548–2556. https://doi.org/10.1210/jc.2004-0395

    Article  Google Scholar 

  • Kim, J. E., O’Connor, L. E., Sands, L. P., Slebodnik, M. B., & Campbell, W. W. (2016). Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutrition Reviews, 74(3), 210–224. https://doi.org/10.1093/nutrit/nuv065

    Article  Google Scholar 

  • Koch, R. E., Buchanan, K. L., Casagrande, S., Crino, O., Dowling, D. K., Hill, G. E., & Stier, A. (2021). Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends in Ecology & Evolution, 36(4), 321–332. https://doi.org/10.1016/j.tree.2020.12.006

    Article  Google Scholar 

  • Koehler, K., De Souza, M. J., & Williams, N. I. (2017). Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations. European Journal of Clinical Nutrition, 71(3), 365–371. https://doi.org/10.1038/ejcn.2016.203

    Article  Google Scholar 

  • Lailvaux, S. P., & Husak, J. F. (2014). The life history of whole-organism performance. 89(4):285–318. https://doi.org/10.1086/678567

  • Leonard, W. R. (2012). Laboratory and field methods for measuring human energy expenditure. American Journal of Human Biology, 24(3), 372–384. https://doi.org/10.1002/ajhb.22260

    Article  Google Scholar 

  • Lexell, J., Taylor, C. C., & Sjostrom, M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. Journal of the Neurological Sciences, 84(2–3), 275–294. https://doi.org/10.1016/0022-510x(88)90132-3

    Article  Google Scholar 

  • Lieberman, D. E., Kistner, T. M., Richard, D., Lee, I. M., & Baggish, A. L. (2021). The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. Proceedings of the National Academy of Sciences of the United States of America, 118(50). https://doi.org/10.1073/pnas.2107621118

  • Longland, T. M., Oikawa, S. Y., Mitchell, C. J., Devries, M. C., & Phillips, S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition, 103(3), 738–746. https://doi.org/10.3945/ajcn.115.119339

    Article  Google Scholar 

  • Martins, P. A., Hoffman, D. J., Fernandes, M. T., Nascimento, C. R., Roberts, S. B., Sesso, R., & Sawaya, A. L. (2004). Stunted children gain less lean body mass and more fat mass than their non-stunted counterparts: a prospective study. British Journal of Nutrition, 92(5), 819–825. https://doi.org/10.1079/bjn20041274

    Article  Google Scholar 

  • Mavros, Y., Kay, S., Anderberg, K. A., Baker, M. K., Wang, Y., Zhao, R., ... Singh. (2013). Changes in insulin resistance and HbA1c are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: interim outcomes from the GREAT2DO trial. Diabetes Care, 36(8), 2372–2379. https://doi.org/10.2337/dc12-2196

  • Memme, J. M., Erlich, A. T., Phukan, G., & Hood, D. A. (2021). Exercise and mitochondrial health. The Journal of Physiology, 599(3), 803–817. https://doi.org/10.1113/JP278853

    Article  Google Scholar 

  • Mettler, S., Mitchell, N., & Tipton, K. D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Medicine & Science in Sports & Exercise, 42(2), 326–337. https://doi.org/10.1249/MSS.0b013e3181b2ef8e

    Article  Google Scholar 

  • Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters, 12(1), 75–92. https://doi.org/10.1111/j.1461-0248.2008.01258.x

    Article  Google Scholar 

  • Morley, J. E. (2017). Anorexia of ageing: a key component in the pathogenesis of both sarcopenia and cachexia. The Journal of Cachexia, Sarcopenia and Muscle, 8(4), 523–526. https://doi.org/10.1002/jcsm.12192

    Article  Google Scholar 

  • Morton, R. W., Traylor, D. A., Weijs, P. J. M., & Phillips, S. M. (2018). Defining anabolic resistance: implications for delivery of clinical care nutrition. Current Opinion in Critical Care, 24(2), 124–130. https://doi.org/10.1097/MCC.0000000000000488

    Article  Google Scholar 

  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C. … Ljungqvist, A. (2014). The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 48(7), 491–497. https://doi.org/10.1136/bjsports-2014-093502

  • Murphy, C., & Koehler, K. (2020). Caloric restriction induces anabolic resistance to resistance exercise. European Journal of Applied Physiology, 120(5), 1155–1164. https://doi.org/10.1007/s00421-020-04354-0

    Article  Google Scholar 

  • Murphy, C., & Koehler, K. (2021). Energy deficiency impairs resistance training gains in lean mass but not strength: A meta-analysis and meta-regression. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14075

    Article  Google Scholar 

  • Murphy, C. H., Churchward-Venne, T. A., Mitchell, C. J., Kolar, N. M., Kassis, A., Karagounis, L. G. … Phillips, S. M. (2015). Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. American Journal of Physiology-Endocrinology and Metabolism, 308(9), E734–743. https://doi.org/10.1152/ajpendo.00550.2014

  • Ocobock, C. J. (2017). Body fat attenuates muscle mass catabolism among physically active humans in temperate and cold high altitude environments. 29(5), e23013. https://doi.org/10.1002/ajhb.23013

  • Otis, C. L., Drinkwater, B., Johnson, M., Loucks, A., & Wilmore, J. (1997). American College of Sports Medicine position stand the female athlete triad. Medicine & Science in Sports & Exercise, 29(5), i–ix. https://doi.org/10.1097/00005768-199705000-00037

    Article  Google Scholar 

  • Pasiakos, S. M., Cao, J. J., Margolis, L. M., Sauter, E. R., Whigham, L. D., McClung, J. P. … Young, A. J. (2013). Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. The FASEB Journal, 27(9), 3837–3847. https://doi.org/10.1096/fj.13-230227

  • Pasiakos, S. M., Vislocky, L. M., Carbone, J. W., Altieri, N., Konopelski, K., Freake, H. C. … Rodriguez, N. R. (2010). Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. Journal of Nutrition, 140(4), 745–751. https://doi.org/10.3945/jn.109.118372

  • Pons, V., Riera, J., Capo, X., Martorell, M., Sureda, A., Tur, J. A. … Pons, A. (2018). Calorie restriction regime enhances physical performance of trained athletes. Journal of the International Society of Sports Nutrition, 15, 12. https://doi.org/10.1186/s12970-018-0214-2

  • Pontzer, H. (2015). Constrained total energy expenditure and the evolutionary biology of energy balance. Exercise and Sport Sciences Reviews, 43(3), 110–116. https://doi.org/10.1249/JES.0000000000000048

    Article  Google Scholar 

  • Pontzer, H. (2018). Energy constraint as a novel mechanism linking exercise and health. Physiology (Bethesda), 33(6), 384–393. https://doi.org/10.1152/physiol.00027.2018

    Article  Google Scholar 

  • Prioreschi, A., Munthali, R. J., Kagura, J., Said-Mohamed, R., De Lucia Rolfe, E., Micklesfield, L. K., & Norris, S. A. (2018). The associations between adult body composition and abdominal adiposity outcomes, and relative weight gain and linear growth from birth to age 22 in the Birth to Twenty Plus cohort, South Africa. PLoS One, 13(1), e0190483. https://doi.org/10.1371/journal.pone.0190483

    Article  Google Scholar 

  • Raubenheimer, D., & Simpson, S. J. (2019). Protein leverage: theoretical foundations and ten points of clarification. Obesity (Silver Spring), 27(8), 1225–1238. https://doi.org/10.1002/oby.22531

    Article  Google Scholar 

  • Reznick, D., Nunney, L., & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15(10), 421–425. https://doi.org/10.1016/S0169-5347(00)01941-8

    Article  Google Scholar 

  • Rosa-Caldwell, M. E., & Greene, N. P. (2019). Muscle metabolism and atrophy: let’s talk about sex. Biology of Sex Differences, 10(1), 43. https://doi.org/10.1186/s13293-019-0257-3

    Article  Google Scholar 

  • Sear, R., Allal, N., & Mace, R. (2004). Height, marriage and reproductive success in gambian women. Socioeconomic Aspects of Human Behavioral Ecology, 23, 203–224 (M. Alvard, Emerald Group Publishing Limited)

  • Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., & Stewart, C. E. (2015). Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 14(4), 511–523. https://doi.org/10.1111/acel.12342

    Article  Google Scholar 

  • Shirley, M. K., Longman, D. P., Elliott-Sale, K. J., Hackney, A. C., Sale, C., & Dolan, E. (2022). A life history perspective on athletes with low energy availability. Sports Medicine. https://doi.org/10.1007/s40279-022-01643-w

    Article  Google Scholar 

  • Skau, J. K., Touch, B., Chhoun, C., Chea, M., Unni, U. S., Makurat, J. … Roos, N. (2015). Effects of animal source food and micronutrient fortification in complementary food products on body composition, iron status, and linear growth: a randomized trial in Cambodia. The American Journal of Clinical Nutrition, 101(4), 742–751. https://doi.org/10.3945/ajcn.114.084889

  • Skau, J. K. H., Grenov, B., Chamnan, C., Chea, M., Wieringa, F. T., Dijkhuizen, M. A. … Friis, H. (2019). Stunting, wasting and breast-feeding as correlates of body composition in Cambodian children at 6 and 15 months of age. British Journal of Nutrition, 121(6), 688–698. https://doi.org/10.1017/S0007114518003884

  • Smiles, W. J., Areta, J. L., Coffey, V. G., Phillips, S. M., Moore, D. R., Stellingwerff, T. … Camera, D. M. (2015). Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(5), R603–612. https://doi.org/10.1152/ajpregu.00413.2014

  • Smiles, W. J., Hawley, J. A., & Camera, D. M. (2016). Effects of skeletal muscle energy availability on protein turnover responses to exercise. The Journal of Experimental Biology, 219(Pt 2), 214–225. https://doi.org/10.1242/jeb.125104

    Article  Google Scholar 

  • Stearns, S. C. (1992). The Evolution of Life Histories. Oxford Oxford University Press

  • Stearns, S. C. (2012). Evolutionary medicine: its scope, interest and potential. Proceedings. Biological Sciences, 279(1746), 4305–4321. https://doi.org/10.1098/rspb.2012.1326

    Article  Google Scholar 

  • Toss, F., Wiklund, P., Nordstrom, P., & Nordstrom, A. (2012). Body composition and mortality risk in later life. Age Ageing, 41(5), 677–681. https://doi.org/10.1093/ageing/afs087

    Article  Google Scholar 

  • Wade, G. N., Schneider, J. E., & Li, H. Y. (1996). Control of fertility by metabolic cues. American Journal of Physiology, 270(1 Pt 1): E1-19. https://doi.org/10.1152/ajpendo.1996.270.1.E1

  • Weinheimer, E. M., Sands, L. P., & Campbell, W. W. (2010). A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutrition Reviews, 68(7), 375–388. https://doi.org/10.1111/j.1753-4887.2010.00298.x

    Article  Google Scholar 

  • Wells, J. C. (2007). Sexual dimorphism of body composition. Best Practice & Research Clinical Endocrinology & Metabolism, 21(3), 415–430. https://doi.org/10.1016/j.beem.2007.04.007

    Article  Google Scholar 

  • Wells, J. C., & Stock, J. T. (2007). The biology of the colonizing ape.  American Journal of Physical Anthropology Suppl, 45, 191–222. https://doi.org/10.1002/ajpa.20735

    Article  Google Scholar 

  • Wells, J. C. K. (2019). Body composition of children with moderate and severe undernutrition and after treatment: a narrative review. BMC Medicine, 17(1), 215. https://doi.org/10.1186/s12916-019-1465-8

    Article  Google Scholar 

  • Wells, J. C. K., Nesse, R. M., Sear, R., Johnstone, R. A., & Stearns, S. C. (2017). Evolutionary public health: introducing the concept. The Lancet, 390(10093), 500–509. https://doi.org/10.1016/S0140-6736(17)30572-X

    Article  Google Scholar 

  • Widdowson, E. M. J. P. o. t. N. S. (1976). The response of the sexes to nutritional stress. 35(2), 175–180

  • Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The Journal of Physiology, 586(15), 3701–3717. https://doi.org/10.1113/jphysiol.2008.153916

    Article  Google Scholar 

  • Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The American Journal of Clinical Nutrition, 84(3), 475–482. https://doi.org/10.1093/ajcn/84.3.475

    Article  Google Scholar 

  • Wysokinski, A., Sobow, T., Kloszewska, I., & Kostka, T. (2015). Mechanisms of the anorexia of aging-a review. Age (Dordrecht, Netherlands), 37(4), 9821. https://doi.org/10.1007/s11357-015-9821-x

    Article  Google Scholar 

  • Zera, A. J., & Harshman, L. G. (2001). The physiology of life history trade-Offs in Animals. 32(1), 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006

Download references

Funding

Eimear Dolan (2019/05616-6 and 2019/26899-6), Bryan Saunders (2016/50438-0) and Gersiel Oliveira (2020/07540-4) are financially supported by the Fundação de Ampara a Pesquisa do Estado do São Paulo (FAPESP). Bryan Saunders has received a grant from Faculdade de Medicina da Universidade de São Paulo (2020.1.362.5.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eimear Dolan.

Ethics declarations

Conflict of Interest

None of the authors have any conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira-Junior, G., Pinto, R.S., Shirley, M.K. et al. The Skeletal Muscle Response to Energy Deficiency: A Life History Perspective. Adaptive Human Behavior and Physiology 8, 114–129 (2022). https://doi.org/10.1007/s40750-021-00182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-021-00182-4

Keywords

Navigation