Advertisement

Masculinity and the Mechanisms of Human Self-Domestication

  • Ben Thomas GleesonEmail author
Original Article

Abstract

Objectives

Pre-historic decline in human craniofacial masculinity has been proposed as evidence of selection against reactive aggression and a process of ‘human self-domestication’ thought to have promoted complex capacities including language, culture, and cumulative technological development. This follows observations of similar morphological changes in non-human animals under selection for reduced aggression. Two distinct domestication hypotheses posit developmental explanations; involving dampened migration of embryonic neural crest cells (NCCs), and declining androgen influences, respectively. Here, I assess the operation and potential interaction of these two mechanisms and consider their role in human adaptation to a cooperative sociocultural niche.

Methods

I provide a review and synthesis of related literature with a focus on physiological mechanisms affecting domesticated reductions in masculinity and sexual dimorphism. Further, I examine several modes of pre-historic sociosexual selection against aggressive reactivity which are proposed to have driven human self-domestication.

Results

I show that pluripotent NCCs provide progenitors for a wide range of vertebrate masculine features, acting as regular targets for sexually driven evolutionary change. This suggests hypoplasia of NCC-derived tissues due to dampened NCC migration is sufficient to explain declines in lineage specific masculine traits and features under domestication. However, lineage-specific androgen receptor variability likely moderates hypoplasia in NCC-derived tissues, and may influence NCC migration, though this latter influence requires further investigation.

Conclusions

These findings synthesise and extend theorised physiological mechanisms of domestication and human self-domestication. Self-domestication under sociosexual selection for dampened reactive aggression and correlated masculine physiology enabled human adaptation to an increasingly complex sociocultural niche. The analysis highlights several avenues for further productive investigation.

Keywords

Human evolution Domestication syndrome Neural crest cells Androgen receptors Sexual selection Masculine aggression 

Notes

Acknowledgements

I would like to acknowledge a debt of gratitude to Geoff Kushnick, Colin Groves, Katherine Balolia, and Heloisa Mariath for their welcome advice, encouragement, and support during the production of this manuscript. This work was supported by an Australian Government RTP scholarship.

Compliance with Ethical Standards

Conflict of Interest Declaration

The author declares there is no conflict of interest in the production of this work.

References

  1. Agnvall, B., Bélteky, J., Katajamaa, R., & Jensen, P. (2017). Is evolution of domestication driven by tameness? A selective review with focus on chickens. Applied Animal Behaviour Science.  https://doi.org/10.1016/j.applanim.2017.09.006.CrossRefGoogle Scholar
  2. Albert, F. W., Shchepina, O., Winter, C., Römpler, H., Teupser, D., Palme, R., et al. (2008). Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans. Hormones and Behavior, 53(3), 413–421.  https://doi.org/10.1016/j.yhbeh.2007.11.010.CrossRefGoogle Scholar
  3. Alexander, R. D. (1990). How Did Humans Evolve? Reflections on the Uniquely Unique Species. Museum of Zoology: University of Michigan.Google Scholar
  4. Alexander, R. D., Hoogland, J. L., Howard, R. D., Noonan, K. M., & Sherman, P. W. (1979). Sexual dimorphism and breeding systems in pinnipeds, ungulates, primates and humans. In N. A. Chagnon & W. Irons (Eds.), Evolutionary biology and human social behaviour. North Scituate, Massachusetts: Duxbury Press.Google Scholar
  5. Alexeev, V., & Yoon, K. (2006). Distinctive Role of the cKit Receptor Tyrosine Kinase Signaling in Mammalian Melanocytes. The Journal of Investigative Dermatology; London, 126(5), 1102–1110.  https://doi.org/10.1038/sj.jid.5700125.CrossRefGoogle Scholar
  6. Anderson, D. L., Thompson, G. W., & Popovich, F. (1975). Evolutionary dental changes. American Journal of Physical Anthropology, 43(1), 95–102.  https://doi.org/10.1002/ajpa.1330430113.CrossRefGoogle Scholar
  7. Andersson, M. (1994). Sexual Selection. Chichester, UK: Princeton University Press.Google Scholar
  8. Archer, J. (2009). Does sexual selection explain human sex differences in aggression? Behavioral and Brain Sciences, 32(3–4), 249–266; discussion 266–311.  https://doi.org/10.1017/S0140525X09990951.CrossRefGoogle Scholar
  9. Bagnara, J. T., & Hadley, M. E. (1973). Chromatophores and color change: The comparative physiology of animal pigmentation. Limited: Pearson Education.Google Scholar
  10. Balolia, K. L., Soligo, C., & Wood, B. (2017). Sagittal crest formation in great apes and gibbons. Journal of Anatomy, 230(6), 820–832.  https://doi.org/10.1111/joa.12609.CrossRefGoogle Scholar
  11. Balzeau, A., Grimaud-Hervé, D., Détroit, F., Holloway, R. L., Combès, B., & Prima, S. (2012). First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens. Bulletins et mémoires de la Société d’anthropologie de Paris, 25(1–2), 1–18.  https://doi.org/10.1007/s13219-012-0069-z.CrossRefGoogle Scholar
  12. Bardin, C. W., & Catterall, J. F. (1981). Testosterone: A Major Determinant of Extragenital Sexual Dimorphism. In Science, 211(4488), 1285–1294. Retrieved from: JSTOR.Google Scholar
  13. Barrett, R. L., & Harris, E. F. (1993). Anabolic steroids and craniofacial growth in the rat. The Angle Orthodontist, 63(4), 289–298.  https://doi.org/10.1043/0003-3219(1993)063<0289:ASACGI>2.0.CO;2.
  14. Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. Journal of Heredity, 70(5), 301–308.CrossRefGoogle Scholar
  15. Benítez-Burraco, A., & Kempe, V. (2018). The Emergence of Modern Languages: Has Human Self-Domestication Optimized Language Transmission? Frontiers in Psychology, 9.  https://doi.org/10.3389/fpsyg.2018.00551.CrossRefGoogle Scholar
  16. Benítez-Burraco, A., Lattanzi, W., & Murphy, E. (2016a). Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Frontiers in Neuroscience, 10.  https://doi.org/10.3389/fnins.2016.00373.
  17. Benítez-Burraco, A., Theofanopoulou, C., & Boeckx, C. (2016b). Globularization and Domestication. Topoi, 1–14.  https://doi.org/10.1007/s11245-016-9399-7.CrossRefGoogle Scholar
  18. Benítez-Burraco, A., Pietro, L. D., Barba, M., & Lattanzi, W. (2017). Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach. Brain, Behavior and Evolution, 89(3), 162–184.  https://doi.org/10.1159/000468506.CrossRefGoogle Scholar
  19. Bhatt, S., Diaz, R., & Trainor, P. A. (2013). Signals and Switches in Mammalian Neural Crest Cell Differentiation. Cold Spring Harbor Perspectives in Biology, 5(2).  https://doi.org/10.1101/cshperspect.a008326.CrossRefGoogle Scholar
  20. Blanckenhorn, W. U. (2005). Behavioral Causes and Consequences of Sexual Size Dimorphism. Ethology, 111(11), 977–1016.  https://doi.org/10.1111/j.1439-0310.2005.01147.x.CrossRefGoogle Scholar
  21. Boehm, C. (2012). Moral Origins: The Evolution of Virtue, Altruism, and Shame. Basic Books.Google Scholar
  22. Boehm, C. (2014). The moral consequences of social selection. Behaviour, 151(2–3), 167–183.  https://doi.org/10.1163/1568539X-00003143.CrossRefGoogle Scholar
  23. Boothroyd, L. G., Gray, A. W., Headland, T. N., Uehara, R. T., Waynforth, D., Burt, D. M., & Pound, N. (2017). Male Facial Appearance and Offspring Mortality in Two Traditional Societies. PLoS One; San Francisco, 12(1).  https://doi.org/10.1371/journal.pone.0169181.CrossRefGoogle Scholar
  24. Borras-Guevara, M. L., Batres, C., & Perrett, D. I. (2017a). Aggressor or protector? Experiences and perceptions of violence predict preferences for masculinity. Evolution and Human Behavior, 38(4), 481–489.  https://doi.org/10.1016/j.evolhumbehav.2017.03.004.CrossRefGoogle Scholar
  25. Borras-Guevara, M. L., Batres, C., & Perrett, D. I. (2017b). Domestic violence shapes Colombian women’s partner choices. Behavioral Ecology and Sociobiology, 71(12), 175.  https://doi.org/10.1007/s00265-017-2405-2.CrossRefGoogle Scholar
  26. Brace, C. L., & Ryan, A. S. (1980). Sexual dimorphism and human tooth size differences. Journal of Human Evolution, 9(5), 417–435.  https://doi.org/10.1016/0047-2484(80)90051-2.CrossRefGoogle Scholar
  27. Brace, C. L., Rosenberg, K. R., & Hunt, K. D. (1987). Gradual Change in Human Tooth Size in the Late Pleistocene and Post- Pleistocene. Evolution, 41(4), 705–720.  https://doi.org/10.2307/2408882.CrossRefGoogle Scholar
  28. Brook, A. H. (1984). A unifying aetiological explanation for anomalies of human tooth number and size. Archives of Oral Biology, 29(5), 373–378.  https://doi.org/10.1016/0003-9969(84)90163-8.CrossRefGoogle Scholar
  29. Brooks, R., Scott, I. M., Maklakov, A. A., Kasumovic, M. M., Clark, A. P., & Penton-Voak, I. S. (2010). National income inequality predicts women’s preferences for masculinized faces better than health does. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100964.  https://doi.org/10.1098/rspb.2010.0964.CrossRefGoogle Scholar
  30. Burkart, J. M., Allon, O., Amici, F., Fichtel, C., Finkenwirth, C., Heschl, A., et al. (2014). The evolutionary origin of human hyper-cooperation. Nature Communications, 5, 4747.  https://doi.org/10.1038/ncomms5747.CrossRefGoogle Scholar
  31. Buss, D. M., & Shackelford, T. K. (1997). Human aggression in evolutionary psychological perspective. Clinical Psychology Review, 17(6), 605–619.  https://doi.org/10.1016/S0272-7358(97)00037-8.CrossRefGoogle Scholar
  32. Calcagno, J. M., & Gibson, K. R. (1988). Human dental reduction: Natural selection or the probable mutation effect. American Journal of Physical Anthropology, 77(4), 505–517.  https://doi.org/10.1002/ajpa.1330770411.CrossRefGoogle Scholar
  33. Carré, J. M., & Archer, J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149–153.  https://doi.org/10.1016/j.copsyc.2017.03.021.CrossRefGoogle Scholar
  34. Carré, J. M., McCormick, C. M., & Mondloch, C. J. (2009). Facial Structure Is a Reliable Cue of Aggressive Behavior. Psychological Science, 20(10), 1194–1198.  https://doi.org/10.1111/j.1467-9280.2009.02423.x.CrossRefGoogle Scholar
  35. Carrier, D. R., & Morgan, M. H. (2015). Protective buttressing of the hominin face. Biological Reviews, 90(1), 330–346.  https://doi.org/10.1111/brv.12112.CrossRefGoogle Scholar
  36. Cieri, R. L., Churchill, S. E., Franciscus, R. G., Tan, J., & Hare, B. (2014). Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity. Current Anthropology, 55(4), 419–443.  https://doi.org/10.1086/677209.CrossRefGoogle Scholar
  37. Clutton-Brock, J. (1984). Dogs. In I. L. Mason (Ed.), Evolution of domesticated animals (pp. 198–211). London: Longman.Google Scholar
  38. Clutton-Brock, J. (1999). A Natural History of Domesticated Mammals (2nd ed.). London: Cambridge University Press.Google Scholar
  39. Coquerelle, M., Bookstein, F. L., Braga, J., Halazonetis, D. J., Weber, G. W., & Mitteroecker, P. (2011). Sexual dimorphism of the human mandible and its association with dental development. American Journal of Physical Anthropology, 145(2), 192–202.  https://doi.org/10.1002/ajpa.21485.CrossRefGoogle Scholar
  40. Cordero, D. R., Brugmann, S., Chu, Y., Bajpai, R., Jame, M., & Helms, J. A. (2011). Cranial neural crest cells on the move: Their roles in craniofacial development. American Journal of Medical Genetics Part A, 155(2), 270–279.  https://doi.org/10.1002/ajmg.a.33702.CrossRefGoogle Scholar
  41. Craig, B. M., Nelson, N. L., & Dixson, B. J. W. (2019). Sexual Selection, Agonistic Signaling, and the Effect of Beards on Recognition of Men’s Anger Displays. Psychological Science, 0956797619834876.  https://doi.org/10.1177/0956797619834876.CrossRefGoogle Scholar
  42. Creuzet, S. E. (2009). Neural crest contribution to forebrain development. Seminars in Cell & Developmental Biology, 20(6), 751–759.  https://doi.org/10.1016/j.semcdb.2009.05.009.CrossRefGoogle Scholar
  43. Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
  44. Darwin, C. (1868). The variation of animals and plants under domestication. London: John Murray.Google Scholar
  45. Darwin, C. (1871). The descent of man: And selection in relation to sex. London. John Murray.Google Scholar
  46. Davis, E. B., Brakora, K. A., & Lee, A. H. (2011). Evolution of ruminant headgear: A review. Proceedings: Biological Sciences, 278(1720), 2857–2865.Google Scholar
  47. DeBruine, L. M., Jones, B. C., Crawford, J. R., Welling, L. L. M., & Little, A. C. (2010). The health of a nation predicts their mate preferences: Cross-cultural variation in women’s preferences for masculinized male faces. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2405–2410.  https://doi.org/10.1098/rspb.2009.2184.CrossRefGoogle Scholar
  48. Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Humans (Second ed.). Oxford, New York: Oxford University Press.Google Scholar
  49. Dixson, B. J. (2016). Masculinity and Femininity. In T. K. Shackelford & V. A. Weekes-Shackelford (Eds.), Encyclopedia of Evolutionary Psychological Science.  https://doi.org/10.1007/978-3-319-16999-6_3389-1.Google Scholar
  50. Dixson, B. J., & Brooks, R. C. (2013). The role of facial hair in women’s perceptions of men’s attractiveness, health, masculinity and parenting abilities. Evolution and Human Behavior, 34(3), 236–241.  https://doi.org/10.1016/j.evolhumbehav.2013.02.003.CrossRefGoogle Scholar
  51. Dixson, A., Dixson, B., & Anderson, M. (2005). Sexual Selection and the Evolution of Visually Conspicuous Sexually Dimorphic Traits in Male Monkeys, Apes, and Human Beings. Annual Review of Sex Research; Mount Vernon, 16, 1–19.Google Scholar
  52. Dixson, B. J., Lee, A. J., Sherlock, J. M., & Talamas, S. N. (2017a). Beneath the beard: Do facial morphometrics influence the strength of judgments of men’s beardedness? Evolution and Human Behavior, 38(2), 164–174.  https://doi.org/10.1016/j.evolhumbehav.2016.08.004.CrossRefGoogle Scholar
  53. Dixson, B. J., Rantala, M. J., Melo, E. F., & Brooks, R. C. (2017b). Beards and the big city: Displays of masculinity may be amplified under crowded conditions. Evolution and Human Behavior, 38(2), 259–264.  https://doi.org/10.1016/j.evolhumbehav.2016.10.009.CrossRefGoogle Scholar
  54. Dreher, J.-C., Dunne, S., Pazderska, A., Frodl, T., Nolan, J. J., & O’Doherty, J. P. (2016). Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proceedings of the National Academy of Sciences, 113(41), 11633–11638.  https://doi.org/10.1073/pnas.1608085113.CrossRefGoogle Scholar
  55. Dyble, M., Thompson, J., Smith, D., Salali, G. D., Chaudhary, N., Page, A. E., et al. (2016). Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups. Current Biology, 26(15), 2017–2021.  https://doi.org/10.1016/j.cub.2016.05.064.CrossRefGoogle Scholar
  56. Ellis, E. (2016). Why Is Human Niche Construction Transforming Planet Earth? In M. Ertsen, C. Mauch, & E. Russell (Eds.), Molding the Planet: Human NicheConstruction at Work. Rachel Carson Center.Google Scholar
  57. Emerson, S. B. (2000). Vertebrate Secondary Sexual Characteristics—Physiological Mechanisms and Evolutionary Patterns. The American Naturalist, 156(1), 84–91.  https://doi.org/10.1086/303370.CrossRefGoogle Scholar
  58. Emlen, D. J. (2008). The Evolution of Animal Weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387–413.CrossRefGoogle Scholar
  59. Ericsson, R., Knight, R., & Johanson, Z. (2013). Evolution and development of the vertebrate neck. Journal of Anatomy, 222(1), 67–78.  https://doi.org/10.1111/j.1469-7580.2012.01530.x.CrossRefGoogle Scholar
  60. Evin, A., Owen, J., Larson, G., Debiais-Thibaud, M., Cucchi, T., Vidarsdottir, U. S., & Dobney, K. (2017). A test for paedomorphism in domestic pig cranial morphology. Biology Letters, 13(8), 20170321.  https://doi.org/10.1098/rsbl.2017.0321.CrossRefGoogle Scholar
  61. Fallahshahroudi, A., Løtvedt, P., Bélteky, J., Altimiras, J., & Jensen, P. (2018). Changes in pituitary gene expression may underlie multiple domesticated traits in chickens. Heredity, 1.  https://doi.org/10.1038/s41437-018-0092-z.CrossRefGoogle Scholar
  62. Fallahsharoudi, A., de Kock, N., Johnsson, M., Ubhayasekera, S. J. K. A., Bergquist, J., Wright, D., & Jensen, P. (2015). Domestication Effects on Stress Induced Steroid Secretion and Adrenal Gene Expression in Chickens. Scientific Reports, 5, 15345.  https://doi.org/10.1038/srep15345.CrossRefGoogle Scholar
  63. Feinberg, D. R., DeBruine, L. M., Jones, B. C., & Little, A. C. (2008). Correlated preferences for men’s facial and vocal masculinity. Evolution and Human Behavior, 29(4), 233–241.  https://doi.org/10.1016/j.evolhumbehav.2007.12.008.CrossRefGoogle Scholar
  64. Fink, B., Weege, B., Manning, J. T., & Trivers, R. (2014). Body symmetry and physical strength in human males: Body Symmetry and Physical Strength in Human MaleS. American Journal of Human Biology, 26(5), 697–700.  https://doi.org/10.1002/ajhb.22584.CrossRefGoogle Scholar
  65. Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26(1), 10–46.  https://doi.org/10.1016/j.evolhumbehav.2004.08.005.CrossRefGoogle Scholar
  66. Folstad, I., & Karter, A. J. (1992). Parasites, Bright Males, and the Immunocompetence Handicap. The American Naturalist, 139(3), 603–622.CrossRefGoogle Scholar
  67. Foster, K., Sheridan, J., Veiga-Fernandes, H., Roderick, K., Pachnis, V., Adams, R., … Coles, M. (2008). Contribution of neural crest-derived cells in the embryonic and adult thymus. Journal of Immunology (Baltimore, Md.: 1950), 180(5), 3183–3189.CrossRefGoogle Scholar
  68. Franciscus, R. G., Maddux, S. D., & Schmidt, K. W. (2013, April 9). Anatomically modern humans as a ‘self-domesticated’ species: Insights from ancestral wolves and descendant dogs. In Presented at the 82nd Annual Meeting of the American Association of Physical Anthropologists. Knoxville, Tennessee, Knoxville: Tennessee.Google Scholar
  69. Frayer, D. W. (1980). Sexual dimorphism and cultural evolution in the Late Pleistocene and Holocene of Europe. Journal of Human Evolution, 9(5), 399–415.  https://doi.org/10.1016/0047-2484(80)90050-0.CrossRefGoogle Scholar
  70. Frayer, D. W., & Wolpoff, M. H. (1985). Sexual Dimorphism. Annual Review of Anthropology, 14(1), 429–473.  https://doi.org/10.1146/annurev.an.14.100185.002241.CrossRefGoogle Scholar
  71. Fry, D. P., & Söderberg, P. (2013). Lethal Aggression in Mobile Forager Bands and Implications for the Origins of War. Science, 341(6143), 270–273.  https://doi.org/10.1126/science.1235675.CrossRefGoogle Scholar
  72. Gallagher, A. (2013). Stature, body mass, and brain size: A two-million-year odyssey. Economics & Human Biology, 11(4), 551–562.  https://doi.org/10.1016/j.ehb.2012.12.003.CrossRefGoogle Scholar
  73. Gangestad, S. W., & Simpson, J. A. (2000). The evolution of human mating: Trade-offs and strategic pluralism. The Behavioral and Brain Sciences, 23(4), 573–587 discussion 587–644.CrossRefGoogle Scholar
  74. Gaulin, S., & Boster, J. (1992). Human marriage systems and sexual dimorphism in stature. American Journal of Physical Anthropology, 89(4), 467–475.  https://doi.org/10.1002/ajpa.1330890408.CrossRefGoogle Scholar
  75. Geiger, M., Sánchez-Villagra, M. R., & Lindholm, A. K. (2018). A longitudinal study of phenotypic changes in early domestication of house mice. Royal Society Open Science, 5(3), 172099.  https://doi.org/10.1098/rsos.172099.CrossRefGoogle Scholar
  76. Georgiev, A. V., Klimczuk, A. C. E., Traficonte, D. M., & Maestripieri, D. (2013). When Violence Pays: A Cost-Benefit Analysis of Aggressive Behavior in Animals and Humans. Evolutionary Psychology : An International Journal of Evolutionary Approaches to Psychology and Behavior, 11(3), 678–699.CrossRefGoogle Scholar
  77. Gettler, L. T. (2010). Direct Male Care and Hominin Evolution: Why Male–Child Interaction Is More Than a Nice Social Idea. American Anthropologist, 112(1), 7–21.  https://doi.org/10.1111/j.1548-1433.2009.01193.x.CrossRefGoogle Scholar
  78. Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16194–16199.  https://doi.org/10.1073/pnas.1105403108.CrossRefGoogle Scholar
  79. Gilbert, S. F. (2010). Developmental biology (9th ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  80. Gleeson, B. T., & Kushnick, G. (2018). Female status, food security, and stature sexual dimorphism: Testing mate choice as a mechanism in human self-domestication. American Journal of Physical Anthropology, 167(3), 458–469.  https://doi.org/10.1002/ajpa.23642.CrossRefGoogle Scholar
  81. Grichnik, J. M. (2006). Kit and Melanocyte Migration. Journal of Investigative Dermatology, 126(5), 945–947.  https://doi.org/10.1038/sj.jid.5700164.CrossRefGoogle Scholar
  82. Groves, C. (1999). The advantages and disadvantages of being domesticated. Perspectives in Human Biology, 4(1), 1–12.Google Scholar
  83. Gurven, M. (2004). To give and to give not: The behavioral ecology of human food transfers. Behavioral and Brain Sciences; New York, 27(4), 543–560.CrossRefGoogle Scholar
  84. Gurven, M., & Hill, K. (2009). Why Do Men Hunt? A Reevaluation of “Man the Hunter” and the Sexual Division of Labor. Current Anthropology, 50(1), 51–74.  https://doi.org/10.1086/595505.CrossRefGoogle Scholar
  85. Hall, B. K. (2000). The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evolution & Development, 2(1), 3–5.  https://doi.org/10.1046/j.1525-142x.2000.00032.x.CrossRefGoogle Scholar
  86. Hall, B. K. (2008). The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution. Springer Science & Business Media.Google Scholar
  87. Hall, J. E. (2010). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia, Pa: Saunders.Google Scholar
  88. Han, D., Wang, S., Hu, Y., Zhang, Y., Dong, X., Yang, Z., et al. (2015). Hyperpigmentation Results in Aberrant Immune Development in Silky Fowl (Gallus Gallus domesticus Brisson). PLOS ONE, 10(6), e0125686.  https://doi.org/10.1371/journal.pone.0125686.CrossRefGoogle Scholar
  89. Harding, C. F. (1983). Hormonal Influences on Avian Aggressive Behavior. In B. B. Svare (Ed.), Hormones and Aggressive Behavior (pp. 435–467).  https://doi.org/10.1007/978-1-4613-3521-4_17.CrossRefGoogle Scholar
  90. Hare, B. (2017). Survival of the Friendliest: Homo sapiens Evolved via Selection for Prosociality. Annual Review of Psychology, 68(1), 155–186.  https://doi.org/10.1146/annurev-psych-010416-044201.CrossRefGoogle Scholar
  91. Hare, B., Wobber, V., & Wrangham, R. W. (2012). The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83(3), 573–585.  https://doi.org/10.1016/j.anbehav.2011.12.007.CrossRefGoogle Scholar
  92. Harris, J. A. (1999). Review and methodological considerations in research on testosterone and aggression. Aggression and Violent Behavior, 4(3), 273–291.  https://doi.org/10.1016/S1359-1789(97)00060-8.CrossRefGoogle Scholar
  93. Hawkes, K. (2013). Primate Sociality to Human Cooperation: Why Us and Not Them? Human Nature, 25(1), 28–48.  https://doi.org/10.1007/s12110-013-9184-x.CrossRefGoogle Scholar
  94. Helmer, D., Goucherin, L., Monchot, H., Peters, J., & Sana Segui, M. (2002). Identifying domestic cattle from early Neolithic sites on the Middle Euphrates with the help of sex determination. In J. D. Vigne, J. Peters, & D. Helmer (Eds.), The First Steps of Animal Domestication (pp. 86–95). Durham: Oxbow Books.Google Scholar
  95. Hemmer, H. (1990). Domestication: The Decline of Environmental Appreciation. Cambridge, U.K.: Cambridge University Press.Google Scholar
  96. Henneberg, M. (1988). Decrease of Human Skull Size in the Holocene. Human Biology, 60(3), 395–405.Google Scholar
  97. Henrich, J. (2017). The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (1st ed.). Princeton Oxford: Princeton University Press.Google Scholar
  98. Hill, Alexander K., Bailey, D. H., & Puts, D. A. (2017). Gorillas in Our Midst? Human Sexual Dimorphism and Contest Competition in Men. In F. J. Ayala (Ed.), On Human Nature (pp. 235–249).Google Scholar
  99. Hodges-Simeon, C. R., Sobraske, K. N. H., Samore, T., Gurven, M., & Gaulin, S. J. C. (2016). Facial Width-To-Height Ratio (fWHR) Is Not Associated with Adolescent Testosterone Levels. PLOS ONE, 11(4), e0153083.  https://doi.org/10.1371/journal.pone.0153083.CrossRefGoogle Scholar
  100. Hollien, H., Green, R., & Massey, K. (1994). Longitudinal research on adolescent voice change in males. The Journal of the Acoustical Society of America, 96(5), 2646–2654.  https://doi.org/10.1121/1.411275.CrossRefGoogle Scholar
  101. Holzleitner, I. J., & Perrett, D. I. (2017). Women’s Preferences for Men’s Facial Masculinity: Trade-Off Accounts Revisited. Adaptive Human Behavior and Physiology, 1–17.  https://doi.org/10.1007/s40750-017-0070-3.CrossRefGoogle Scholar
  102. Hrdy, S. B. (2009). Mothers and Others: The Evolutionary Origins of Mutual Understanding. Cambridge, Mass.: The Belknap Press.Google Scholar
  103. Humphrey, L. T. (1998). Growth patterns in the modern human skeleton. American Journal of Physical Anthropology, 105(1), 57–72.  https://doi.org/10.1002/(SICI)1096-8644(199801)105:1<57::AID-AJPA6>3.0.CO;2-A.CrossRefGoogle Scholar
  104. Jean-Jacques, H., Simon, N., & Philipp, G. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1663), 20140062.  https://doi.org/10.1098/rstb.2014.0062.CrossRefGoogle Scholar
  105. Jensen, P. (2006). Domestication—From behaviour to genes and back again. Applied Animal Behaviour Science, 97(1), 3–15.  https://doi.org/10.1016/j.applanim.2005.11.015.CrossRefGoogle Scholar
  106. Jinno, H., Morozova, O., Jones, K. L., Biernaskie, J. A., Paris, M., Hosokawa, R., et al. (2010). Convergent Genesis of an Adult Neural Crest-Like Dermal Stem Cell from Distinct Developmental Origins. STEM CELLS, 28(11), 2027–2040.  https://doi.org/10.1002/stem.525.CrossRefGoogle Scholar
  107. Kharlamova, A. V., Faleev, V. I., & Trapezov, O. V. (2000). Effect of selection for behavior on the cranial traits of the American mink (Mustela vison). Genetika, 36(6), 823–828.Google Scholar
  108. Kierdorf, U., & Kierdorf, H. (2010). Deer Antlers - A Model of Mammalian Appendage Regeneration: An Extensive Review. Gerontology; Basel, 57(1), 53–65.  https://doi.org/10.1159/000300565.CrossRefGoogle Scholar
  109. King, H. D., & Donaldson, H. H. (1929). Life processes and size of the body and organs of the gray Norway rat during ten generations in captivity. American Anatomical Memoirs, 14, 106–106.Google Scholar
  110. Kissel, M., & Kim, N. C. (2018). The emergence of human warfare: Current perspectives. American Journal of Physical Anthropology, 0(0), 1–23.  https://doi.org/10.1002/ajpa.23751 CrossRefGoogle Scholar
  111. Knight, R. D., & Schilling, T. F. (2013). Cranial Neural Crest and Development of the Head Skeleton. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK6075/
  112. Komada, Y., Yamane, T., Kadota, D., Isono, K., Takakura, N., Hayashi, S.-I., & Yamazaki, H. (2012). Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells. PLoS One; San Francisco, 7(11), e46436.  https://doi.org/10.1371/journal.pone.0046436.CrossRefGoogle Scholar
  113. Krause, M. P., Dworski, S., Feinberg, K., Jones, K., Johnston, A. P. W., Paul, S., et al. (2014). Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors. Stem Cell Reports, 3(1), 85–100.  https://doi.org/10.1016/j.stemcr.2014.05.011.CrossRefGoogle Scholar
  114. Kruger, D. J. (2006). Male facial masculinity influences attributions of personality and reproductive strategy. Personal Relationships, 13(4), 451–463.  https://doi.org/10.1111/j.1475-6811.2006.00129.x.CrossRefGoogle Scholar
  115. Kruska, D. (1988). Mammalian Domestication and its Effect on Brain Structure and Behavior. In H. J. Jerison & I. Jerison (Eds.), Intelligence and Evolutionary Biology (pp. 211–250).  https://doi.org/10.1007/978-3-642-70877-0_13.CrossRefGoogle Scholar
  116. Kruska, D. (1996). The effect of domestication on brain size and composition in the mink (Mustela vison). Journal of Zoology, 239(4), 645–661.  https://doi.org/10.1111/j.1469-7998.1996.tb05468.x.CrossRefGoogle Scholar
  117. Kruska, D. (2005). On the Evolutionary Significance of Encephalization in Some Eutherian Mammals: Effects of Adaptive Radiation, Domestication, and Feralization. Brain, Behavior and Evolution, 65(2), 73–108.CrossRefGoogle Scholar
  118. Kulikov, A. V., Bazhenova, E. Y., Kulikova, E. A., Fursenko, D. V., Trapezova, L. I., Terenina, E. E., et al. (2016). Interplay between aggression, brain monoamines and fur color mutation in the American mink. Genes, Brain, and Behavior, 15(8), 733–740.  https://doi.org/10.1111/gbb.12313.CrossRefGoogle Scholar
  119. Künzl, C., & Sachser, N. (1999). The Behavioral Endocrinology of Domestication: A Comparison between the Domestic Guinea Pig (Cavia apereaf.porcellus) and Its Wild Ancestor, the Cavy (Cavia aperea). Hormones and Behavior, 35(1), 28–37.  https://doi.org/10.1006/hbeh.1998.1493.CrossRefGoogle Scholar
  120. Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences, 78(6), 3721–3725.  https://doi.org/10.1073/pnas.78.6.3721.CrossRefGoogle Scholar
  121. Le Douarin, N. M., & Kalcheim, C. (1999). The Neural Crest. Retrieved from.  https://doi.org/10.1017/CBO9780511897948.
  122. Le Douarin, N. M., Creuzet, S., Couly, G., & Dupin, E. (2004). Neural crest cell plasticity and its limits. Development, 131(19), 4637–4650.  https://doi.org/10.1242/dev.01350.CrossRefGoogle Scholar
  123. Leach, H. M. (2003). Human Domestication Reconsidered. Current Anthropology, 44(3), 349–368.  https://doi.org/10.1086/368119.CrossRefGoogle Scholar
  124. Leach, H. M. (2007). Selection and the Unforeseen Consequences of Domestication. In R. Cassidy & M. Mullin (Eds.), Where the Wild Things Are Now: Domestication Reconsidered. Oxford and New York: Berg.Google Scholar
  125. Lee, A. J. (2015). Sexual selection and the role of variation in women’s mate preference for masculine traits (PhD Thesis). University of Queensland.Google Scholar
  126. Lee, A. J., Brooks, R. C., Potter, K. J., & Zietsch, B. P. (2015). Pathogen disgust sensitivity and resource scarcity are associated with mate preference for different waist-to-hip ratios, shoulder-to-hip ratios, and body mass index. Evolution and Human Behavior, 36(6), 480–488.  https://doi.org/10.1016/j.evolhumbehav.2015.07.002.CrossRefGoogle Scholar
  127. Lefevre, C. E., Lewis, G. J., Perrett, D. I., & Penke, L. (2013). Telling facial metrics: Facial width is associated with testosterone levels in men. Evolution and Human Behavior, 34(4), 273–279.  https://doi.org/10.1016/j.evolhumbehav.2013.03.005.CrossRefGoogle Scholar
  128. Leigh, S. R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. Journal of Human Evolution, 23(1), 27–50.  https://doi.org/10.1016/0047-2484(92)90042-8.CrossRefGoogle Scholar
  129. Leutenegger, W., & Shell, B. (1987). Variability and sexual dimorphism in canine size of Australopithecus and extant hominoids. Journal of Human Evolution, 16(4), 359–367.  https://doi.org/10.1016/0047-2484(87)90066-2.CrossRefGoogle Scholar
  130. Li, Y., Bailey, D. H., Winegard, B., Puts, D. A., Welling, L. L. M., & Geary, D. C. (2014). Women’s Preference for Masculine Traits Is Disrupted by Images of Male-on-Female Aggression. PLoS ONE, 9(10).  https://doi.org/10.1371/journal.pone.0110497.CrossRefGoogle Scholar
  131. Lieberman, D. E. (1998). Sphenoid shortening and the evolution of modern human cranial shape. Nature, 393(6681), 158–162.  https://doi.org/10.1038/30227.CrossRefGoogle Scholar
  132. Lieberman, D. E. (2011). The Evolution of the Human Head (1st ed.). Cambridge, Mass: Belknap Press.Google Scholar
  133. Ligon, J. D., Thornhill, R., Zuk, M., & Johnson, K. (1990). Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl. Animal Behaviour, 40(2), 367–373.  https://doi.org/10.1016/S0003-3472(05)80932-7.CrossRefGoogle Scholar
  134. Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature; London, 445(7130), 843–850.  https://doi.org/10.1038/nature05660.CrossRefGoogle Scholar
  135. Lincoln, G. A. (1989). Seasonal cycles in testicular activity in Mouflon, Soay sheep and domesticated breeds of sheep: Breeding seasons modified by domestication. Zoological Journal of the Linnean Society, 95(2), 137–147.  https://doi.org/10.1111/j.1096-3642.1989.tb02307.x.CrossRefGoogle Scholar
  136. Lincoln, G. A., Lincoln, C. E., & McNeilly, A. S. (1990). Seasonal cycles in the blood plasma concentration of FSH, inhibin and testosterone, and testicular size in rams of wild, feral and domesticated breeds of sheep. Journal of Reproduction and Fertility, 88(2), 623–633.  https://doi.org/10.1530/jrf.0.0880623.CrossRefGoogle Scholar
  137. Lippold, S., Knapp, M., Kuznetsova, T., Leonard, J. A., Benecke, N., Ludwig, A., et al. (2011). Discovery of lost diversity of paternal horse lineages using ancient DNA. Nature Communications, 2, 450.  https://doi.org/10.1038/ncomms1447.CrossRefGoogle Scholar
  138. Little, A. C., Cohen, D. L., Jones, B. C., & Belsky, J. (2007). Human Preferences for Facial Masculinity Change with Relationship Type and Environmental Harshness. Behavioral Ecology and Sociobiology, 61(6), 967–973.CrossRefGoogle Scholar
  139. Little, A. C., DeBruine, L. M., & Jones, B. C. (2010). Exposure to visual cues of pathogen contagion changes preferences for masculinity and symmetry in opposite-sex faces. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101925.  https://doi.org/10.1098/rspb.2010.1925.CrossRefGoogle Scholar
  140. Little, A. C., Connely, J., Feinberg, D. R., Jones, B. C., & Roberts, S. C. (2011). Human preference for masculinity differs according to context in faces, bodies, voices, and smell. Behavioral Ecology, 22(4), 862–868.  https://doi.org/10.1093/beheco/arr061.CrossRefGoogle Scholar
  141. Liu, A., & Niswander, L. A. (2005). Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Reviews Neuroscience, 6(12), 945–954.  https://doi.org/10.1038/nrn1805.CrossRefGoogle Scholar
  142. Liu, C., Tang, Y., Ge, H., Wang, F., Sun, H., Meng, H., et al. (2014). Increasing breadth of the frontal lobe but decreasing height of the human brain between two Chinese samples from a Neolithic site and from living humans. American Journal of Physical Anthropology, 154(1), 94–103.  https://doi.org/10.1002/ajpa.22476.CrossRefGoogle Scholar
  143. Løtvedt, P., Fallahshahroudi, A., Bektic, L., Altimiras, J., & Jensen, P. (2017). Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiology of Stress, 7, 113–121.  https://doi.org/10.1016/j.ynstr.2017.08.002.CrossRefGoogle Scholar
  144. Marcinkowska, U. M., Rantala, M. J., Lee, A. J., Kozlov, M. V., Aavik, T., Cai, H., et al. (2019). Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Scientific Reports, 9(1), 1–10.  https://doi.org/10.1038/s41598-019-39350-8.CrossRefGoogle Scholar
  145. Marečková, K., Weinbrand, Z., Chakravarty, M. M., Lawrence, C., Aleong, R., Leonard, G., et al. (2011). Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Hormones and Behavior, 60(5), 681–690.  https://doi.org/10.1016/j.yhbeh.2011.09.004.CrossRefGoogle Scholar
  146. Marshall, F. B., Dobney, K., Denham, T., & Capriles, J. M. (2014). Evaluating the roles of directed breeding and gene flow in animal domestication. Proceedings of the National Academy of Sciences, 111(17), 6153–6158.  https://doi.org/10.1073/pnas.1312984110.CrossRefGoogle Scholar
  147. Matsumoto, T., Sakari, M., Okada, M., Yokoyama, A., Takahashi, S., Kouzmenko, A., & Kato, S. (2013). The Androgen Receptor in Health and Disease. Annual Review of Physiology, 75(1), 201–224.  https://doi.org/10.1146/annurev-physiol-030212-183656.CrossRefGoogle Scholar
  148. Matsuoka, T., Ahlberg, P. E., Kessaris, N., Iannarelli, P., Dennehy, U., Richardson, W. D., et al. (2005). Neural Crest Origins of the Neck and Shoulder. Nature, 436(7049), 347–355.  https://doi.org/10.1038/nature03837.CrossRefGoogle Scholar
  149. McCullough, E. L., Miller, C. W., & Emlen, D. J. (2016). Why Sexually Selected Weapons Are Not Ornaments. Trends in Ecology & Evolution, 31(10), 742–751.  https://doi.org/10.1016/j.tree.2016.07.004.CrossRefGoogle Scholar
  150. McGonnell, I. M., McKay, I. J., & Graham, A. (2001). A Population of Caudally Migrating Cranial Neural Crest Cells: Functional and Evolutionary Implications. Developmental Biology, 236(2), 354–363.  https://doi.org/10.1006/dbio.2001.0330.CrossRefGoogle Scholar
  151. McHenry, H. M. (1994). Tempo and mode in human evolution. Proceedings of the National Academy of Sciences, 91(15), 6780–6786.CrossRefGoogle Scholar
  152. Mishina, Y., & Snider, T. N. (2014). Neural crest cell signaling pathways critical to cranial bone development and pathology. Experimental Cell Research, 325(2), 138–147.  https://doi.org/10.1016/j.yexcr.2014.01.019.CrossRefGoogle Scholar
  153. Mitteroecker, P., Windhager, S., Müller, G. B., & Schaefer, K. (2015). The Morphometrics of “Masculinity” in Human Faces: E0118374. PLoS One, 10(2).  https://doi.org/10.1371/journal.pone.0118374.CrossRefGoogle Scholar
  154. Monks, D. A., & Holmes, M. M. (2017). Androgen receptors and muscle: A key mechanism underlying life history trade-offs. Journal of Comparative Physiology A, 1–10.  https://doi.org/10.1007/s00359-017-1222-4.CrossRefGoogle Scholar
  155. Montague, M., Li, G., Gandolfi, B., Khan, R. L., Aken, B., Searle, S., … Warren, W. (2014). Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences, 111, 17230–17235.  https://doi.org/10.1073/pnas.1410083111 CrossRefGoogle Scholar
  156. Morey, D. F., & Jeger, R. (2015). Paleolithic dogs: Why sustained domestication then? Journal of Archaeological Science: Reports, 3, 420–428.  https://doi.org/10.1016/j.jasrep.2015.06.031.CrossRefGoogle Scholar
  157. Noden, D. M. (1986). Patterning of avian craniofacial muscles. Developmental Biology, 116(2), 347–356.  https://doi.org/10.1016/0012-1606(86)90138-7.CrossRefGoogle Scholar
  158. Oiso, N., Fukai, K., Kawada, A., & Suzuki, T. (2013). Piebaldism. The Journal of Dermatology, 40(5), 330–335.  https://doi.org/10.1111/j.1346-8138.2012.01583.x.CrossRefGoogle Scholar
  159. Osadchuk, L. V. (1998). Biosynthesis of testosterone in the gonads in silver fox embryos after long-term selection for domesticated behavior. Genetika, 34(7), 941–946.Google Scholar
  160. Osadchuk, L. V. (2001). The effect of genetic selection for lack of aggression towards humans on male reproductive physiology in the silver fox. Proceedings of the British Society for Animal Science, 16.Google Scholar
  161. Palvimo, J. J. (2012). The androgen receptor. Molecular and Cellular Endocrinology, 352(1), 1–3.  https://doi.org/10.1016/j.mce.2012.01.016.CrossRefGoogle Scholar
  162. Pavan, W. J., & Tilghman, S. M. (1994). Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 7159–7163.CrossRefGoogle Scholar
  163. Pendleton, A. L., Shen, F., Taravella, A. M., Emery, S., Veeramah, K. R., Boyko, A. R., & Kidd, J. M. (2018). Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biology, 16, 64.  https://doi.org/10.1186/s12915-018-0535-2.CrossRefGoogle Scholar
  164. Pettenati-Soubayroux, I., Signoli, M., & Dutour, O. (2002). Sexual dimorphism in teeth: Discriminatory effectiveness of permanent lower canine size observed in a XVIIIth century osteological series. Forensic Science International, 126(3), 227–232.  https://doi.org/10.1016/S0379-0738(02)00080-4.CrossRefGoogle Scholar
  165. Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. American Journal of Physical Anthropology, 116(S33), 25–53.  https://doi.org/10.1002/ajpa.10011.CrossRefGoogle Scholar
  166. Plavcan, J. M. (2012). Sexual Size Dimorphism, Canine Dimorphism, and Male-Male Competition in Primates. Human Nature, 23(1), 45–67.  https://doi.org/10.1007/s12110-012-9130-3.CrossRefGoogle Scholar
  167. Plavcan, J. M., & van Schaik, C. P. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. American Journal of Physical Anthropology, 103(1), 37–68.  https://doi.org/10.1002/(SICI)1096-8644(199705)103:1<37::AID-AJPA4>3.0.CO;2-A.CrossRefGoogle Scholar
  168. Polák, J., & Frynta, D. (2009). Sexual size dimorphism in domestic goats, sheep, and their wild relatives. Biological Journal of the Linnean Society, 98(4), 872–883.  https://doi.org/10.1111/j.1095-8312.2009.01294.x.CrossRefGoogle Scholar
  169. Polder, B. J., Hof, M. A. V., der Linden, F. P. G. M. V., & Kuijpers-Jagtman, A. M. (2004). A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dentistry and Oral Epidemiology, 32(3), 217–226.  https://doi.org/10.1111/j.1600-0528.2004.00158.x.CrossRefGoogle Scholar
  170. Polychronis, G., & Halazonetis, D. J. (2014). Shape covariation between the craniofacial complex and first molars in humans. Journal of Anatomy, 225(2), 220–231.  https://doi.org/10.1111/joa.12202.CrossRefGoogle Scholar
  171. Prior, N. H., Yap, K. N., Mainwaring, M. C., Adomat, H. H., Crino, O. L., Ma, C., et al. (2017). Sex steroid profiles in zebra finches: Effects of reproductive state and domestication. General and Comparative Endocrinology, 244, 108–117.  https://doi.org/10.1016/j.ygcen.2016.02.018.CrossRefGoogle Scholar
  172. Puts, D. A., Gaulin, S., & Verdolini, K. (2006). Dominance and the evolution of sexual dimorphism in human voice pitch. Evolution and Human Behavior, 27(4), 283–296.  https://doi.org/10.1016/j.evolhumbehav.2005.11.003.CrossRefGoogle Scholar
  173. Puts, D. A., Jones, B. C., & DeBruine, L. M. (2012). Sexual Selection on Human Faces and Voices. The Journal of Sex Research, 49(2–3), 227–243.  https://doi.org/10.1080/00224499.2012.658924 CrossRefGoogle Scholar
  174. Puts, D. A., Hill, A. K., Bailey, D. H., Walker, R. S., Rendall, D., Wheatley, J. R., et al. (2016). Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proc. R. Soc. B, 283(1829), 20152830.  https://doi.org/10.1098/rspb.2015.2830.CrossRefGoogle Scholar
  175. Quist, M. C., Watkins, C. D., Smith, F. G., Little, A. C., Debruine, L. M., & Jones, B. C. (2012). Sociosexuality Predicts Women’s Preferences for Symmetry in Men’s Faces. Archives of Sexual Behavior; New York, 41(6), 1415–1421.  https://doi.org/10.1007/s10508-011-9848-8.CrossRefGoogle Scholar
  176. Ralls, K. (1976). Mammals in Which Females are Larger Than Males. The Quarterly Review of Biology, 51(2), 245–276.CrossRefGoogle Scholar
  177. Rensch, B. (1950). Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische Beiträge, 1, 58–69.Google Scholar
  178. Ribeiro, D. C., Brook, A. H., Hughes, T. E., Sampson, W. J., & Townsend, G. C. (2013). Intrauterine Hormone Effects on Tooth Dimensions. Journal of Dental Research, 92(5), 425–431.  https://doi.org/10.1177/0022034513484934.CrossRefGoogle Scholar
  179. Ruff, C. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211–232.CrossRefGoogle Scholar
  180. Ruff, C., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387(6629), 173–176.  https://doi.org/10.1038/387173a0.CrossRefGoogle Scholar
  181. Rutberg, S. E., Kolpak, M. L., Gourley, J. A., Tan, G., Henry, J. P., & Shander, D. (2006). Differences in Expression of Specific Biomarkers Distinguish Human Beard from Scalp Dermal Papilla Cells. Journal of Investigative Dermatology, 126(12), 2583–2595.  https://doi.org/10.1038/sj.jid.5700454.CrossRefGoogle Scholar
  182. Ryan, T. M., & Shaw, C. N. (2015). Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proceedings of the National Academy of Sciences, 112(2), 372–377.  https://doi.org/10.1073/pnas.1418646112.CrossRefGoogle Scholar
  183. Sánchez-Villagra, M. R., & van Schaik, C. P. (2019). Evaluating the self-domestication hypothesis of human evolution. Evolutionary Anthropology: Issues, News, and Reviews, 28(3), 133–143.  https://doi.org/10.1002/evan.21777.CrossRefGoogle Scholar
  184. Sánchez-Villagra, M. R., Geiger, M., & Schneider, R. A. (2016). The taming of the neural crest: A developmental perspective on the origins of morphological covariation in domesticated mammals. Open Science, 3(6), 160107.  https://doi.org/10.1098/rsos.160107.CrossRefGoogle Scholar
  185. Santagati, F., & Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. Nature Reviews. Neuroscience; London, 4(10), 806–818.  https://doi.org/10.1038/nrn1221.CrossRefGoogle Scholar
  186. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R., & Francis-West, P. H. (2008). Larsen’s Human Embryology (4th ed.). Philadelphia: Churchill Livingstone.Google Scholar
  187. Schwartz, G. T., & Dean, M. C. (2005). Sexual dimorphism in modern human permanent teeth. American Journal of Physical Anthropology, 128(2), 312–317.  https://doi.org/10.1002/ajpa.20211.CrossRefGoogle Scholar
  188. Scott, I. M. L., Clark, A. P., Boothroyd, L. G., & Penton-Voak, I. S. (2013). Do men’s faces really signal heritable immunocompetence? Behavioral Ecology, 24(3), 579–589.  https://doi.org/10.1093/beheco/ars092.CrossRefGoogle Scholar
  189. Sell, A., Hone, L. S., & Pound, N. (2012). The Importance of Physical Strength to Human Males. Human Nature : An Interdisciplinary Biosocial Perspective; New York, 23(1), 30–44.  https://doi.org/10.1007/s12110-012-9131-2.CrossRefGoogle Scholar
  190. Shearer, B. M., Sholts, S. B., Garvin, H. M., & Wärmländer, S. K. T. S. (2012). Sexual dimorphism in human browridge volume measured from 3D models of dry crania: A new digital morphometrics approach. Forensic Science International, 222(1–3), 400.e1–400.e5.  https://doi.org/10.1016/j.forsciint.2012.06.013 CrossRefGoogle Scholar
  191. Simões-Costa, M., & Bronner, M. E. (2015). Establishing neural crest identity: A gene regulatory recipe. Development, 142(2), 242–257.  https://doi.org/10.1242/dev.105445.CrossRefGoogle Scholar
  192. Singh, N., Albert, F. W., Plyusnina, I., Trut, L. N., Pӓӓbo, S., & Harvati, K. (2017). Facial shape differences between rats selected for tame and aggressive behaviors. PLOS ONE, 12(4), e0175043.  https://doi.org/10.1371/journal.pone.0175043.CrossRefGoogle Scholar
  193. Slominski, A., Tobin, D. J., Shibahara, S., & Wortsman, J. (2004). Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiological Reviews, 84(4), 1155–1228.  https://doi.org/10.1152/physrev.00044.2003.CrossRefGoogle Scholar
  194. Sterelny, K. (2011). From hominins to humans: How sapiens became behaviourally modern. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566), 809–822.  https://doi.org/10.1098/rstb.2010.0301.CrossRefGoogle Scholar
  195. Sterelny, K. (2012). The Evolved Apprentice. Caimbridge, MA: MIT Press.CrossRefGoogle Scholar
  196. Sterelny, K. (2018). Adaptation without Insight? In R. Boyd, A Different Kind of Animal (pp. 135–151). Retrieved from http://www.jstor.org/stable/j.ctvc7799z.8 CrossRefGoogle Scholar
  197. Theofanopoulou, C., Gastaldon, S., O’Rourke, T., Samuels, B. D., Messner, A., Martins, P. T., et al. (2017). Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One; San Francisco, 12(10), e0185306.  https://doi.org/10.1371/journal.pone.0185306.CrossRefGoogle Scholar
  198. Thomas, J., & Kirby, S. (2018). Self domestication and the evolution of language. Biology & Philosophy, 33(1–2), 9.  https://doi.org/10.1007/s10539-018-9612-8.CrossRefGoogle Scholar
  199. Tinghitella, R. M., Lackey, A. C. R., Martin, M., Dijkstra, P. D., Drury, J. P., Heathcote, R., et al. (2018). On the role of male competition in speciation: A review and research agenda. Behavioral Ecology, 29(4), 783–797.  https://doi.org/10.1093/beheco/arx151.CrossRefGoogle Scholar
  200. Trivers, R. L. (1972). Parental investment and sexual selection. In B. M. Campbell (Ed.), Sexual Selection and the Descent of Man, 1871–1971 (pp. 136–179). Chicago: Aldine.Google Scholar
  201. Trut, L. N. (1999). Early Canid Domestication: The Farm-Fox Experiment. American Scientist, 87(2), 160.  https://doi.org/10.1511/1999.2.160.CrossRefGoogle Scholar
  202. Trut, L. N., Plyusnina, I. Z., & Oskina, I. N. (2004). An Experiment on Fox Domestication and Debatable Issues of Evolution of the Dog. Russian Journal of Genetics, 40(6), 644–655.  https://doi.org/10.1023/B:RUGE.0000033312.92773.c1.CrossRefGoogle Scholar
  203. Trut, L. N., Oskina, I. N., & Kharlamova, A. V. (2009). Animal evolution during domestication: The domesticated fox as a model. BioEssays, 31(3), 349–360.  https://doi.org/10.1002/bies.200800070.CrossRefGoogle Scholar
  204. Turner, G. F., & Burrows, M. T. (1995). A model of sympatric speciation by sexual selection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1359), 287–292.  https://doi.org/10.1098/rspb.1995.0093.CrossRefGoogle Scholar
  205. Ueharu, H., Yoshida, S., Kikkawa, T., Kanno, N., Higuchi, M., Kato, T., et al. (2017). Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. Journal of Anatomy, 230(3), 373–380.  https://doi.org/10.1111/joa.12572.CrossRefGoogle Scholar
  206. UNODC. (2013). Global Study On Homicide 2013: Trends, Contexts, Data (No. 14.IV.1). Retrieved from United Nations Office on Drugs and Crime website: http://www.psychologytoday.com/blog/homo-aggressivus/201409/male-aggression
  207. Ursi, W. J. S., Trotman, C.-A., McNamara, J. A., & Behrents, R. G. (1993). Sexual dimorphism in normal craniofacial growth. The Angle Orthodontist, 63(1), 47–56.  https://doi.org/10.1043/0003-3219(1993)063<0047:SDINCG>2.0.CO;2.
  208. Valasek, P., Theis, S., Krejci, E., Grim, M., Maina, F., Shwartz, Y., et al. (2010). Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. Journal of Anatomy, 216(4), 482–488.  https://doi.org/10.1111/j.1469-7580.2009.01200.x.CrossRefGoogle Scholar
  209. Verdonck, A., De Ridder, L., Verbeke, G., Bourguignon, J. P., Carels, C., Kühn, E. R., … de Zegher, F. (1998). Comparative effects of neonatal and prepubertal castration on craniofacial growth in rats. Archives of Oral Biology, 43(11), 861–871.  https://doi.org/10.1016/S0003-9969(98)00071-5.CrossRefGoogle Scholar
  210. Verdonck, A., Gaethofs, M., Carels, C., & de Zegher, F. (1999). Effect of low-dose testosterone treatment on craniofacial growth in boys with delayed puberty. European Journal of Orthodontics, 21(2), 137–143.  https://doi.org/10.1093/ejo/21.2.137.CrossRefGoogle Scholar
  211. Wells, J. C. K. (2012). Sexual dimorphism in body composition across human populations: Associations with climate and proxies for short- and long-term energy supply. American Journal of Human Biology, 24(4), 411–419.  https://doi.org/10.1002/ajhb.22223.CrossRefGoogle Scholar
  212. Whitehouse, A. J. O., Gilani, S. Z., Shafait, F., Mian, A., Tan, D. W., Maybery, M. T., et al. (2015). Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proceedings of the Royal Society B: Biological Sciences, 282(1816).  https://doi.org/10.1098/rspb.2015.1351.CrossRefGoogle Scholar
  213. Wiercinski, A. (1979). Has the brain size decreased since the upper paleolithic period ? / La taille du cerveau a-t-elle diminué depuis le Paléolithique supérieur ? (en anglais). Bulletins et Mémoires de La Société d’anthropologie de Paris, 6(4), 419–427.  https://doi.org/10.3406/bmsap.1979.1979.CrossRefGoogle Scholar
  214. Wilkins, A. S. (2017). Revisiting two hypotheses on the “domestication syndrome” in light of genomic data. Vavilov Journal of Genetics and Breeding 21(14).  https://doi.org/10.18699/VJ17.262 CrossRefGoogle Scholar
  215. Wilkins, A. S. (2019). A striking example of developmental bias in an evolutionary process: The “domestication syndrome.” Evolution & Development, 0(0), 1–11.  https://doi.org/10.1111/ede.12319
  216. Wilkins, A. S., Wrangham, R. W., & Tecumseh Fitch, W. (2014). The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics, 197(3), 795–808.  https://doi.org/10.1534/genetics.114.165423.CrossRefGoogle Scholar
  217. Wilson, M., & Daly, M. (1985). Competitiveness, risk taking, and violence: The young male syndrome. Ethology and Sociobiology, 6(1), 59–73.  https://doi.org/10.1016/0162-3095(85)90041-X.CrossRefGoogle Scholar
  218. Wilson, M. J., & Spaziani, E. (1973). Testosterone regulation of pigmentation in scrotal epidermis of the rat. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 140(4), 451–458.  https://doi.org/10.1007/BF00306672.CrossRefGoogle Scholar
  219. Windhager, S., Schaefer, K., & Fink, B. (2011). Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. American Journal of Human Biology: The Official Journal of the Human Biology Council, 23(6), 805–814.  https://doi.org/10.1002/ajhb.21219.CrossRefGoogle Scholar
  220. Wrangham, R. W. (2014). Did Homo sapiens Self-Domesticate? Symposia presented at the Center for Academic Research and Training in. Domestication and Human Evolution, Salk Institute, La Jolla, CA: Anthropogeny Retrieved from https://carta.anthropogeny.org/events/sessions/did-homo-sapiens-self-domesticate.Google Scholar
  221. Wrangham, R. W. (2018). Two types of aggression in human evolution. Proceedings of the National Academy of Sciences, 115(2), 245–253.  https://doi.org/10.1073/pnas.1713611115.CrossRefGoogle Scholar
  222. Wrangham, R. W. (2019a). Hypotheses for the Evolution of Reduced Reactive Aggression in the Context of Human Self-Domestication. Frontiers in Psychology, 10.  https://doi.org/10.3389/fpsyg.2019.01914.
  223. Wrangham, R. W. (2019b). The Goodness Paradox: The Strange Relationship Between Peace and Violence in Human Evolution. Retrieved from https://www.booktopia.com.au/the-goodness-paradox-richard-wrangham/prod9781781255834.html
  224. Wrangham, R. W., & Glowacki, L. (2012). Intergroup Aggression in Chimpanzees and War in Nomadic Hunter-Gatherers. Human Nature, 23(1), 5–29.  https://doi.org/10.1007/s12110-012-9132-1.CrossRefGoogle Scholar
  225. Wright, D. (2015). The Genetic Architecture of Domestication in Animals. Bioinformatics and Biology Insights, 9(Suppl 4), 11–20.  https://doi.org/10.4137/BBI.S28902.CrossRefGoogle Scholar
  226. Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.  https://doi.org/10.1016/0022-5193(75)90111-3.CrossRefGoogle Scholar
  227. Zahavi, A., & Zahavi, A. (1999). The Handicap Principle: A Missing Piece of Darwin’s Puzzle. OUP USA.Google Scholar
  228. Zaidi, A. A., White, J. D., Mattern, B. C., Liebowitz, C. R., Puts, D. A., Claes, P., & Shriver, M. D. (2019). Facial masculinity does not appear to be a condition-dependent male ornament and does not reflect MHC heterozygosity in humans. Proceedings of the National Academy of Sciences, 201808659.  https://doi.org/10.1073/pnas.1808659116.CrossRefGoogle Scholar
  229. Zeder, M. A. (2008). Animal Domestication in the Zagros: An Update and Directions for Future Research. In E. Vila, L. Goucherin, A. Choyke, & H. Buitenhuis (Eds.), Archaeozoology of the Near East VIII (Vol. 49, pp. 243–277). Retrieved from http://www.persee.fr/doc/mom_1955-4982_2008_act_49_1_2709
  230. Zeder, M. A. (2012). The Domestication of Animals. Journal of Anthropological Research, 68(2), 161–190.CrossRefGoogle Scholar
  231. Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198.  https://doi.org/10.1073/pnas.1501711112.CrossRefGoogle Scholar
  232. Zeder, M. A. (2017). Domestication as a model system for the extended evolutionary synthesis (Vol. 7).  https://doi.org/10.1098/rsfs.2016.0133.CrossRefGoogle Scholar
  233. Zeuner, F. E. (1963). A history of domesticated animals. London: Hutchinson.Google Scholar
  234. Zipser, B., Schleking, A., Kaiser, S., & Sachser, N. (2014). Effects of domestication on biobehavioural profiles: A comparison of domestic guinea pigs and wild cavies from early to late adolescence. Frontiers in Zoology, 11, 30.  https://doi.org/10.1186/1742-9994-11-30.CrossRefGoogle Scholar
  235. Zohary, D., Tchernov, E., & Horwitz, L. K. (1998). The role of unconscious selection in the domestication of sheep and goats. Journal of Zoology, 245(2), 129–135.  https://doi.org/10.1111/j.1469-7998.1998.tb00082.x.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fenner School of Environment and Society, Linnaeus WayAustralian National UniversityActonAustralia

Personalised recommendations