Masculinity and the Mechanisms of Human Self-Domestication
Abstract
Objectives
Pre-historic decline in human craniofacial masculinity has been proposed as evidence of selection against reactive aggression and a process of ‘human self-domestication’ thought to have promoted complex capacities including language, culture, and cumulative technological development. This follows observations of similar morphological changes in non-human animals under selection for reduced aggression. Two distinct domestication hypotheses posit developmental explanations; involving dampened migration of embryonic neural crest cells (NCCs), and declining androgen influences, respectively. Here, I assess the operation and potential interaction of these two mechanisms and consider their role in human adaptation to a cooperative sociocultural niche.
Methods
I provide a review and synthesis of related literature with a focus on physiological mechanisms affecting domesticated reductions in masculinity and sexual dimorphism. Further, I examine several modes of pre-historic sociosexual selection against aggressive reactivity which are proposed to have driven human self-domestication.
Results
I show that pluripotent NCCs provide progenitors for a wide range of vertebrate masculine features, acting as regular targets for sexually driven evolutionary change. This suggests hypoplasia of NCC-derived tissues due to dampened NCC migration is sufficient to explain declines in lineage specific masculine traits and features under domestication. However, lineage-specific androgen receptor variability likely moderates hypoplasia in NCC-derived tissues, and may influence NCC migration, though this latter influence requires further investigation.
Conclusions
These findings synthesise and extend theorised physiological mechanisms of domestication and human self-domestication. Self-domestication under sociosexual selection for dampened reactive aggression and correlated masculine physiology enabled human adaptation to an increasingly complex sociocultural niche. The analysis highlights several avenues for further productive investigation.
Keywords
Human evolution Domestication syndrome Neural crest cells Androgen receptors Sexual selection Masculine aggressionNotes
Acknowledgements
I would like to acknowledge a debt of gratitude to Geoff Kushnick, Colin Groves, Katherine Balolia, and Heloisa Mariath for their welcome advice, encouragement, and support during the production of this manuscript. This work was supported by an Australian Government RTP scholarship.
Compliance with Ethical Standards
Conflict of Interest Declaration
The author declares there is no conflict of interest in the production of this work.
References
- Agnvall, B., Bélteky, J., Katajamaa, R., & Jensen, P. (2017). Is evolution of domestication driven by tameness? A selective review with focus on chickens. Applied Animal Behaviour Science. https://doi.org/10.1016/j.applanim.2017.09.006.CrossRefGoogle Scholar
- Albert, F. W., Shchepina, O., Winter, C., Römpler, H., Teupser, D., Palme, R., et al. (2008). Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans. Hormones and Behavior, 53(3), 413–421. https://doi.org/10.1016/j.yhbeh.2007.11.010.CrossRefGoogle Scholar
- Alexander, R. D. (1990). How Did Humans Evolve? Reflections on the Uniquely Unique Species. Museum of Zoology: University of Michigan.Google Scholar
- Alexander, R. D., Hoogland, J. L., Howard, R. D., Noonan, K. M., & Sherman, P. W. (1979). Sexual dimorphism and breeding systems in pinnipeds, ungulates, primates and humans. In N. A. Chagnon & W. Irons (Eds.), Evolutionary biology and human social behaviour. North Scituate, Massachusetts: Duxbury Press.Google Scholar
- Alexeev, V., & Yoon, K. (2006). Distinctive Role of the cKit Receptor Tyrosine Kinase Signaling in Mammalian Melanocytes. The Journal of Investigative Dermatology; London, 126(5), 1102–1110. https://doi.org/10.1038/sj.jid.5700125.CrossRefGoogle Scholar
- Anderson, D. L., Thompson, G. W., & Popovich, F. (1975). Evolutionary dental changes. American Journal of Physical Anthropology, 43(1), 95–102. https://doi.org/10.1002/ajpa.1330430113.CrossRefGoogle Scholar
- Andersson, M. (1994). Sexual Selection. Chichester, UK: Princeton University Press.Google Scholar
- Archer, J. (2009). Does sexual selection explain human sex differences in aggression? Behavioral and Brain Sciences, 32(3–4), 249–266; discussion 266–311. https://doi.org/10.1017/S0140525X09990951.CrossRefGoogle Scholar
- Bagnara, J. T., & Hadley, M. E. (1973). Chromatophores and color change: The comparative physiology of animal pigmentation. Limited: Pearson Education.Google Scholar
- Balolia, K. L., Soligo, C., & Wood, B. (2017). Sagittal crest formation in great apes and gibbons. Journal of Anatomy, 230(6), 820–832. https://doi.org/10.1111/joa.12609.CrossRefGoogle Scholar
- Balzeau, A., Grimaud-Hervé, D., Détroit, F., Holloway, R. L., Combès, B., & Prima, S. (2012). First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens. Bulletins et mémoires de la Société d’anthropologie de Paris, 25(1–2), 1–18. https://doi.org/10.1007/s13219-012-0069-z.CrossRefGoogle Scholar
- Bardin, C. W., & Catterall, J. F. (1981). Testosterone: A Major Determinant of Extragenital Sexual Dimorphism. In Science, 211(4488), 1285–1294. Retrieved from: JSTOR.Google Scholar
- Barrett, R. L., & Harris, E. F. (1993). Anabolic steroids and craniofacial growth in the rat. The Angle Orthodontist, 63(4), 289–298. https://doi.org/10.1043/0003-3219(1993)063<0289:ASACGI>2.0.CO;2.
- Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. Journal of Heredity, 70(5), 301–308.CrossRefGoogle Scholar
- Benítez-Burraco, A., & Kempe, V. (2018). The Emergence of Modern Languages: Has Human Self-Domestication Optimized Language Transmission? Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00551.CrossRefGoogle Scholar
- Benítez-Burraco, A., Lattanzi, W., & Murphy, E. (2016a). Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00373.
- Benítez-Burraco, A., Theofanopoulou, C., & Boeckx, C. (2016b). Globularization and Domestication. Topoi, 1–14. https://doi.org/10.1007/s11245-016-9399-7.CrossRefGoogle Scholar
- Benítez-Burraco, A., Pietro, L. D., Barba, M., & Lattanzi, W. (2017). Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach. Brain, Behavior and Evolution, 89(3), 162–184. https://doi.org/10.1159/000468506.CrossRefGoogle Scholar
- Bhatt, S., Diaz, R., & Trainor, P. A. (2013). Signals and Switches in Mammalian Neural Crest Cell Differentiation. Cold Spring Harbor Perspectives in Biology, 5(2). https://doi.org/10.1101/cshperspect.a008326.CrossRefGoogle Scholar
- Blanckenhorn, W. U. (2005). Behavioral Causes and Consequences of Sexual Size Dimorphism. Ethology, 111(11), 977–1016. https://doi.org/10.1111/j.1439-0310.2005.01147.x.CrossRefGoogle Scholar
- Boehm, C. (2012). Moral Origins: The Evolution of Virtue, Altruism, and Shame. Basic Books.Google Scholar
- Boehm, C. (2014). The moral consequences of social selection. Behaviour, 151(2–3), 167–183. https://doi.org/10.1163/1568539X-00003143.CrossRefGoogle Scholar
- Boothroyd, L. G., Gray, A. W., Headland, T. N., Uehara, R. T., Waynforth, D., Burt, D. M., & Pound, N. (2017). Male Facial Appearance and Offspring Mortality in Two Traditional Societies. PLoS One; San Francisco, 12(1). https://doi.org/10.1371/journal.pone.0169181.CrossRefGoogle Scholar
- Borras-Guevara, M. L., Batres, C., & Perrett, D. I. (2017a). Aggressor or protector? Experiences and perceptions of violence predict preferences for masculinity. Evolution and Human Behavior, 38(4), 481–489. https://doi.org/10.1016/j.evolhumbehav.2017.03.004.CrossRefGoogle Scholar
- Borras-Guevara, M. L., Batres, C., & Perrett, D. I. (2017b). Domestic violence shapes Colombian women’s partner choices. Behavioral Ecology and Sociobiology, 71(12), 175. https://doi.org/10.1007/s00265-017-2405-2.CrossRefGoogle Scholar
- Brace, C. L., & Ryan, A. S. (1980). Sexual dimorphism and human tooth size differences. Journal of Human Evolution, 9(5), 417–435. https://doi.org/10.1016/0047-2484(80)90051-2.CrossRefGoogle Scholar
- Brace, C. L., Rosenberg, K. R., & Hunt, K. D. (1987). Gradual Change in Human Tooth Size in the Late Pleistocene and Post- Pleistocene. Evolution, 41(4), 705–720. https://doi.org/10.2307/2408882.CrossRefGoogle Scholar
- Brook, A. H. (1984). A unifying aetiological explanation for anomalies of human tooth number and size. Archives of Oral Biology, 29(5), 373–378. https://doi.org/10.1016/0003-9969(84)90163-8.CrossRefGoogle Scholar
- Brooks, R., Scott, I. M., Maklakov, A. A., Kasumovic, M. M., Clark, A. P., & Penton-Voak, I. S. (2010). National income inequality predicts women’s preferences for masculinized faces better than health does. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100964. https://doi.org/10.1098/rspb.2010.0964.CrossRefGoogle Scholar
- Burkart, J. M., Allon, O., Amici, F., Fichtel, C., Finkenwirth, C., Heschl, A., et al. (2014). The evolutionary origin of human hyper-cooperation. Nature Communications, 5, 4747. https://doi.org/10.1038/ncomms5747.CrossRefGoogle Scholar
- Buss, D. M., & Shackelford, T. K. (1997). Human aggression in evolutionary psychological perspective. Clinical Psychology Review, 17(6), 605–619. https://doi.org/10.1016/S0272-7358(97)00037-8.CrossRefGoogle Scholar
- Calcagno, J. M., & Gibson, K. R. (1988). Human dental reduction: Natural selection or the probable mutation effect. American Journal of Physical Anthropology, 77(4), 505–517. https://doi.org/10.1002/ajpa.1330770411.CrossRefGoogle Scholar
- Carré, J. M., & Archer, J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149–153. https://doi.org/10.1016/j.copsyc.2017.03.021.CrossRefGoogle Scholar
- Carré, J. M., McCormick, C. M., & Mondloch, C. J. (2009). Facial Structure Is a Reliable Cue of Aggressive Behavior. Psychological Science, 20(10), 1194–1198. https://doi.org/10.1111/j.1467-9280.2009.02423.x.CrossRefGoogle Scholar
- Carrier, D. R., & Morgan, M. H. (2015). Protective buttressing of the hominin face. Biological Reviews, 90(1), 330–346. https://doi.org/10.1111/brv.12112.CrossRefGoogle Scholar
- Cieri, R. L., Churchill, S. E., Franciscus, R. G., Tan, J., & Hare, B. (2014). Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity. Current Anthropology, 55(4), 419–443. https://doi.org/10.1086/677209.CrossRefGoogle Scholar
- Clutton-Brock, J. (1984). Dogs. In I. L. Mason (Ed.), Evolution of domesticated animals (pp. 198–211). London: Longman.Google Scholar
- Clutton-Brock, J. (1999). A Natural History of Domesticated Mammals (2nd ed.). London: Cambridge University Press.Google Scholar
- Coquerelle, M., Bookstein, F. L., Braga, J., Halazonetis, D. J., Weber, G. W., & Mitteroecker, P. (2011). Sexual dimorphism of the human mandible and its association with dental development. American Journal of Physical Anthropology, 145(2), 192–202. https://doi.org/10.1002/ajpa.21485.CrossRefGoogle Scholar
- Cordero, D. R., Brugmann, S., Chu, Y., Bajpai, R., Jame, M., & Helms, J. A. (2011). Cranial neural crest cells on the move: Their roles in craniofacial development. American Journal of Medical Genetics Part A, 155(2), 270–279. https://doi.org/10.1002/ajmg.a.33702.CrossRefGoogle Scholar
- Craig, B. M., Nelson, N. L., & Dixson, B. J. W. (2019). Sexual Selection, Agonistic Signaling, and the Effect of Beards on Recognition of Men’s Anger Displays. Psychological Science, 0956797619834876. https://doi.org/10.1177/0956797619834876.CrossRefGoogle Scholar
- Creuzet, S. E. (2009). Neural crest contribution to forebrain development. Seminars in Cell & Developmental Biology, 20(6), 751–759. https://doi.org/10.1016/j.semcdb.2009.05.009.CrossRefGoogle Scholar
- Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
- Darwin, C. (1868). The variation of animals and plants under domestication. London: John Murray.Google Scholar
- Darwin, C. (1871). The descent of man: And selection in relation to sex. London. John Murray.Google Scholar
- Davis, E. B., Brakora, K. A., & Lee, A. H. (2011). Evolution of ruminant headgear: A review. Proceedings: Biological Sciences, 278(1720), 2857–2865.Google Scholar
- DeBruine, L. M., Jones, B. C., Crawford, J. R., Welling, L. L. M., & Little, A. C. (2010). The health of a nation predicts their mate preferences: Cross-cultural variation in women’s preferences for masculinized male faces. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2405–2410. https://doi.org/10.1098/rspb.2009.2184.CrossRefGoogle Scholar
- Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Humans (Second ed.). Oxford, New York: Oxford University Press.Google Scholar
- Dixson, B. J. (2016). Masculinity and Femininity. In T. K. Shackelford & V. A. Weekes-Shackelford (Eds.), Encyclopedia of Evolutionary Psychological Science. https://doi.org/10.1007/978-3-319-16999-6_3389-1.Google Scholar
- Dixson, B. J., & Brooks, R. C. (2013). The role of facial hair in women’s perceptions of men’s attractiveness, health, masculinity and parenting abilities. Evolution and Human Behavior, 34(3), 236–241. https://doi.org/10.1016/j.evolhumbehav.2013.02.003.CrossRefGoogle Scholar
- Dixson, A., Dixson, B., & Anderson, M. (2005). Sexual Selection and the Evolution of Visually Conspicuous Sexually Dimorphic Traits in Male Monkeys, Apes, and Human Beings. Annual Review of Sex Research; Mount Vernon, 16, 1–19.Google Scholar
- Dixson, B. J., Lee, A. J., Sherlock, J. M., & Talamas, S. N. (2017a). Beneath the beard: Do facial morphometrics influence the strength of judgments of men’s beardedness? Evolution and Human Behavior, 38(2), 164–174. https://doi.org/10.1016/j.evolhumbehav.2016.08.004.CrossRefGoogle Scholar
- Dixson, B. J., Rantala, M. J., Melo, E. F., & Brooks, R. C. (2017b). Beards and the big city: Displays of masculinity may be amplified under crowded conditions. Evolution and Human Behavior, 38(2), 259–264. https://doi.org/10.1016/j.evolhumbehav.2016.10.009.CrossRefGoogle Scholar
- Dreher, J.-C., Dunne, S., Pazderska, A., Frodl, T., Nolan, J. J., & O’Doherty, J. P. (2016). Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proceedings of the National Academy of Sciences, 113(41), 11633–11638. https://doi.org/10.1073/pnas.1608085113.CrossRefGoogle Scholar
- Dyble, M., Thompson, J., Smith, D., Salali, G. D., Chaudhary, N., Page, A. E., et al. (2016). Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups. Current Biology, 26(15), 2017–2021. https://doi.org/10.1016/j.cub.2016.05.064.CrossRefGoogle Scholar
- Ellis, E. (2016). Why Is Human Niche Construction Transforming Planet Earth? In M. Ertsen, C. Mauch, & E. Russell (Eds.), Molding the Planet: Human NicheConstruction at Work. Rachel Carson Center.Google Scholar
- Emerson, S. B. (2000). Vertebrate Secondary Sexual Characteristics—Physiological Mechanisms and Evolutionary Patterns. The American Naturalist, 156(1), 84–91. https://doi.org/10.1086/303370.CrossRefGoogle Scholar
- Emlen, D. J. (2008). The Evolution of Animal Weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387–413.CrossRefGoogle Scholar
- Ericsson, R., Knight, R., & Johanson, Z. (2013). Evolution and development of the vertebrate neck. Journal of Anatomy, 222(1), 67–78. https://doi.org/10.1111/j.1469-7580.2012.01530.x.CrossRefGoogle Scholar
- Evin, A., Owen, J., Larson, G., Debiais-Thibaud, M., Cucchi, T., Vidarsdottir, U. S., & Dobney, K. (2017). A test for paedomorphism in domestic pig cranial morphology. Biology Letters, 13(8), 20170321. https://doi.org/10.1098/rsbl.2017.0321.CrossRefGoogle Scholar
- Fallahshahroudi, A., Løtvedt, P., Bélteky, J., Altimiras, J., & Jensen, P. (2018). Changes in pituitary gene expression may underlie multiple domesticated traits in chickens. Heredity, 1. https://doi.org/10.1038/s41437-018-0092-z.CrossRefGoogle Scholar
- Fallahsharoudi, A., de Kock, N., Johnsson, M., Ubhayasekera, S. J. K. A., Bergquist, J., Wright, D., & Jensen, P. (2015). Domestication Effects on Stress Induced Steroid Secretion and Adrenal Gene Expression in Chickens. Scientific Reports, 5, 15345. https://doi.org/10.1038/srep15345.CrossRefGoogle Scholar
- Feinberg, D. R., DeBruine, L. M., Jones, B. C., & Little, A. C. (2008). Correlated preferences for men’s facial and vocal masculinity. Evolution and Human Behavior, 29(4), 233–241. https://doi.org/10.1016/j.evolhumbehav.2007.12.008.CrossRefGoogle Scholar
- Fink, B., Weege, B., Manning, J. T., & Trivers, R. (2014). Body symmetry and physical strength in human males: Body Symmetry and Physical Strength in Human MaleS. American Journal of Human Biology, 26(5), 697–700. https://doi.org/10.1002/ajhb.22584.CrossRefGoogle Scholar
- Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26(1), 10–46. https://doi.org/10.1016/j.evolhumbehav.2004.08.005.CrossRefGoogle Scholar
- Folstad, I., & Karter, A. J. (1992). Parasites, Bright Males, and the Immunocompetence Handicap. The American Naturalist, 139(3), 603–622.CrossRefGoogle Scholar
- Foster, K., Sheridan, J., Veiga-Fernandes, H., Roderick, K., Pachnis, V., Adams, R., … Coles, M. (2008). Contribution of neural crest-derived cells in the embryonic and adult thymus. Journal of Immunology (Baltimore, Md.: 1950), 180(5), 3183–3189.CrossRefGoogle Scholar
- Franciscus, R. G., Maddux, S. D., & Schmidt, K. W. (2013, April 9). Anatomically modern humans as a ‘self-domesticated’ species: Insights from ancestral wolves and descendant dogs. In Presented at the 82nd Annual Meeting of the American Association of Physical Anthropologists. Knoxville, Tennessee, Knoxville: Tennessee.Google Scholar
- Frayer, D. W. (1980). Sexual dimorphism and cultural evolution in the Late Pleistocene and Holocene of Europe. Journal of Human Evolution, 9(5), 399–415. https://doi.org/10.1016/0047-2484(80)90050-0.CrossRefGoogle Scholar
- Frayer, D. W., & Wolpoff, M. H. (1985). Sexual Dimorphism. Annual Review of Anthropology, 14(1), 429–473. https://doi.org/10.1146/annurev.an.14.100185.002241.CrossRefGoogle Scholar
- Fry, D. P., & Söderberg, P. (2013). Lethal Aggression in Mobile Forager Bands and Implications for the Origins of War. Science, 341(6143), 270–273. https://doi.org/10.1126/science.1235675.CrossRefGoogle Scholar
- Gallagher, A. (2013). Stature, body mass, and brain size: A two-million-year odyssey. Economics & Human Biology, 11(4), 551–562. https://doi.org/10.1016/j.ehb.2012.12.003.CrossRefGoogle Scholar
- Gangestad, S. W., & Simpson, J. A. (2000). The evolution of human mating: Trade-offs and strategic pluralism. The Behavioral and Brain Sciences, 23(4), 573–587 discussion 587–644.CrossRefGoogle Scholar
- Gaulin, S., & Boster, J. (1992). Human marriage systems and sexual dimorphism in stature. American Journal of Physical Anthropology, 89(4), 467–475. https://doi.org/10.1002/ajpa.1330890408.CrossRefGoogle Scholar
- Geiger, M., Sánchez-Villagra, M. R., & Lindholm, A. K. (2018). A longitudinal study of phenotypic changes in early domestication of house mice. Royal Society Open Science, 5(3), 172099. https://doi.org/10.1098/rsos.172099.CrossRefGoogle Scholar
- Georgiev, A. V., Klimczuk, A. C. E., Traficonte, D. M., & Maestripieri, D. (2013). When Violence Pays: A Cost-Benefit Analysis of Aggressive Behavior in Animals and Humans. Evolutionary Psychology : An International Journal of Evolutionary Approaches to Psychology and Behavior, 11(3), 678–699.CrossRefGoogle Scholar
- Gettler, L. T. (2010). Direct Male Care and Hominin Evolution: Why Male–Child Interaction Is More Than a Nice Social Idea. American Anthropologist, 112(1), 7–21. https://doi.org/10.1111/j.1548-1433.2009.01193.x.CrossRefGoogle Scholar
- Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16194–16199. https://doi.org/10.1073/pnas.1105403108.CrossRefGoogle Scholar
- Gilbert, S. F. (2010). Developmental biology (9th ed.). Sunderland, MA: Sinauer Associates.Google Scholar
- Gleeson, B. T., & Kushnick, G. (2018). Female status, food security, and stature sexual dimorphism: Testing mate choice as a mechanism in human self-domestication. American Journal of Physical Anthropology, 167(3), 458–469. https://doi.org/10.1002/ajpa.23642.CrossRefGoogle Scholar
- Grichnik, J. M. (2006). Kit and Melanocyte Migration. Journal of Investigative Dermatology, 126(5), 945–947. https://doi.org/10.1038/sj.jid.5700164.CrossRefGoogle Scholar
- Groves, C. (1999). The advantages and disadvantages of being domesticated. Perspectives in Human Biology, 4(1), 1–12.Google Scholar
- Gurven, M. (2004). To give and to give not: The behavioral ecology of human food transfers. Behavioral and Brain Sciences; New York, 27(4), 543–560.CrossRefGoogle Scholar
- Gurven, M., & Hill, K. (2009). Why Do Men Hunt? A Reevaluation of “Man the Hunter” and the Sexual Division of Labor. Current Anthropology, 50(1), 51–74. https://doi.org/10.1086/595505.CrossRefGoogle Scholar
- Hall, B. K. (2000). The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evolution & Development, 2(1), 3–5. https://doi.org/10.1046/j.1525-142x.2000.00032.x.CrossRefGoogle Scholar
- Hall, B. K. (2008). The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution. Springer Science & Business Media.Google Scholar
- Hall, J. E. (2010). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia, Pa: Saunders.Google Scholar
- Han, D., Wang, S., Hu, Y., Zhang, Y., Dong, X., Yang, Z., et al. (2015). Hyperpigmentation Results in Aberrant Immune Development in Silky Fowl (Gallus Gallus domesticus Brisson). PLOS ONE, 10(6), e0125686. https://doi.org/10.1371/journal.pone.0125686.CrossRefGoogle Scholar
- Harding, C. F. (1983). Hormonal Influences on Avian Aggressive Behavior. In B. B. Svare (Ed.), Hormones and Aggressive Behavior (pp. 435–467). https://doi.org/10.1007/978-1-4613-3521-4_17.CrossRefGoogle Scholar
- Hare, B. (2017). Survival of the Friendliest: Homo sapiens Evolved via Selection for Prosociality. Annual Review of Psychology, 68(1), 155–186. https://doi.org/10.1146/annurev-psych-010416-044201.CrossRefGoogle Scholar
- Hare, B., Wobber, V., & Wrangham, R. W. (2012). The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83(3), 573–585. https://doi.org/10.1016/j.anbehav.2011.12.007.CrossRefGoogle Scholar
- Harris, J. A. (1999). Review and methodological considerations in research on testosterone and aggression. Aggression and Violent Behavior, 4(3), 273–291. https://doi.org/10.1016/S1359-1789(97)00060-8.CrossRefGoogle Scholar
- Hawkes, K. (2013). Primate Sociality to Human Cooperation: Why Us and Not Them? Human Nature, 25(1), 28–48. https://doi.org/10.1007/s12110-013-9184-x.CrossRefGoogle Scholar
- Helmer, D., Goucherin, L., Monchot, H., Peters, J., & Sana Segui, M. (2002). Identifying domestic cattle from early Neolithic sites on the Middle Euphrates with the help of sex determination. In J. D. Vigne, J. Peters, & D. Helmer (Eds.), The First Steps of Animal Domestication (pp. 86–95). Durham: Oxbow Books.Google Scholar
- Hemmer, H. (1990). Domestication: The Decline of Environmental Appreciation. Cambridge, U.K.: Cambridge University Press.Google Scholar
- Henneberg, M. (1988). Decrease of Human Skull Size in the Holocene. Human Biology, 60(3), 395–405.Google Scholar
- Henrich, J. (2017). The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (1st ed.). Princeton Oxford: Princeton University Press.Google Scholar
- Hill, Alexander K., Bailey, D. H., & Puts, D. A. (2017). Gorillas in Our Midst? Human Sexual Dimorphism and Contest Competition in Men. In F. J. Ayala (Ed.), On Human Nature (pp. 235–249).Google Scholar
- Hodges-Simeon, C. R., Sobraske, K. N. H., Samore, T., Gurven, M., & Gaulin, S. J. C. (2016). Facial Width-To-Height Ratio (fWHR) Is Not Associated with Adolescent Testosterone Levels. PLOS ONE, 11(4), e0153083. https://doi.org/10.1371/journal.pone.0153083.CrossRefGoogle Scholar
- Hollien, H., Green, R., & Massey, K. (1994). Longitudinal research on adolescent voice change in males. The Journal of the Acoustical Society of America, 96(5), 2646–2654. https://doi.org/10.1121/1.411275.CrossRefGoogle Scholar
- Holzleitner, I. J., & Perrett, D. I. (2017). Women’s Preferences for Men’s Facial Masculinity: Trade-Off Accounts Revisited. Adaptive Human Behavior and Physiology, 1–17. https://doi.org/10.1007/s40750-017-0070-3.CrossRefGoogle Scholar
- Hrdy, S. B. (2009). Mothers and Others: The Evolutionary Origins of Mutual Understanding. Cambridge, Mass.: The Belknap Press.Google Scholar
- Humphrey, L. T. (1998). Growth patterns in the modern human skeleton. American Journal of Physical Anthropology, 105(1), 57–72. https://doi.org/10.1002/(SICI)1096-8644(199801)105:1<57::AID-AJPA6>3.0.CO;2-A.CrossRefGoogle Scholar
- Jean-Jacques, H., Simon, N., & Philipp, G. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1663), 20140062. https://doi.org/10.1098/rstb.2014.0062.CrossRefGoogle Scholar
- Jensen, P. (2006). Domestication—From behaviour to genes and back again. Applied Animal Behaviour Science, 97(1), 3–15. https://doi.org/10.1016/j.applanim.2005.11.015.CrossRefGoogle Scholar
- Jinno, H., Morozova, O., Jones, K. L., Biernaskie, J. A., Paris, M., Hosokawa, R., et al. (2010). Convergent Genesis of an Adult Neural Crest-Like Dermal Stem Cell from Distinct Developmental Origins. STEM CELLS, 28(11), 2027–2040. https://doi.org/10.1002/stem.525.CrossRefGoogle Scholar
- Kharlamova, A. V., Faleev, V. I., & Trapezov, O. V. (2000). Effect of selection for behavior on the cranial traits of the American mink (Mustela vison). Genetika, 36(6), 823–828.Google Scholar
- Kierdorf, U., & Kierdorf, H. (2010). Deer Antlers - A Model of Mammalian Appendage Regeneration: An Extensive Review. Gerontology; Basel, 57(1), 53–65. https://doi.org/10.1159/000300565.CrossRefGoogle Scholar
- King, H. D., & Donaldson, H. H. (1929). Life processes and size of the body and organs of the gray Norway rat during ten generations in captivity. American Anatomical Memoirs, 14, 106–106.Google Scholar
- Kissel, M., & Kim, N. C. (2018). The emergence of human warfare: Current perspectives. American Journal of Physical Anthropology, 0(0), 1–23. https://doi.org/10.1002/ajpa.23751 CrossRefGoogle Scholar
- Knight, R. D., & Schilling, T. F. (2013). Cranial Neural Crest and Development of the Head Skeleton. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK6075/
- Komada, Y., Yamane, T., Kadota, D., Isono, K., Takakura, N., Hayashi, S.-I., & Yamazaki, H. (2012). Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells. PLoS One; San Francisco, 7(11), e46436. https://doi.org/10.1371/journal.pone.0046436.CrossRefGoogle Scholar
- Krause, M. P., Dworski, S., Feinberg, K., Jones, K., Johnston, A. P. W., Paul, S., et al. (2014). Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors. Stem Cell Reports, 3(1), 85–100. https://doi.org/10.1016/j.stemcr.2014.05.011.CrossRefGoogle Scholar
- Kruger, D. J. (2006). Male facial masculinity influences attributions of personality and reproductive strategy. Personal Relationships, 13(4), 451–463. https://doi.org/10.1111/j.1475-6811.2006.00129.x.CrossRefGoogle Scholar
- Kruska, D. (1988). Mammalian Domestication and its Effect on Brain Structure and Behavior. In H. J. Jerison & I. Jerison (Eds.), Intelligence and Evolutionary Biology (pp. 211–250). https://doi.org/10.1007/978-3-642-70877-0_13.CrossRefGoogle Scholar
- Kruska, D. (1996). The effect of domestication on brain size and composition in the mink (Mustela vison). Journal of Zoology, 239(4), 645–661. https://doi.org/10.1111/j.1469-7998.1996.tb05468.x.CrossRefGoogle Scholar
- Kruska, D. (2005). On the Evolutionary Significance of Encephalization in Some Eutherian Mammals: Effects of Adaptive Radiation, Domestication, and Feralization. Brain, Behavior and Evolution, 65(2), 73–108.CrossRefGoogle Scholar
- Kulikov, A. V., Bazhenova, E. Y., Kulikova, E. A., Fursenko, D. V., Trapezova, L. I., Terenina, E. E., et al. (2016). Interplay between aggression, brain monoamines and fur color mutation in the American mink. Genes, Brain, and Behavior, 15(8), 733–740. https://doi.org/10.1111/gbb.12313.CrossRefGoogle Scholar
- Künzl, C., & Sachser, N. (1999). The Behavioral Endocrinology of Domestication: A Comparison between the Domestic Guinea Pig (Cavia apereaf.porcellus) and Its Wild Ancestor, the Cavy (Cavia aperea). Hormones and Behavior, 35(1), 28–37. https://doi.org/10.1006/hbeh.1998.1493.CrossRefGoogle Scholar
- Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences, 78(6), 3721–3725. https://doi.org/10.1073/pnas.78.6.3721.CrossRefGoogle Scholar
- Le Douarin, N. M., & Kalcheim, C. (1999). The Neural Crest. Retrieved from. https://doi.org/10.1017/CBO9780511897948.
- Le Douarin, N. M., Creuzet, S., Couly, G., & Dupin, E. (2004). Neural crest cell plasticity and its limits. Development, 131(19), 4637–4650. https://doi.org/10.1242/dev.01350.CrossRefGoogle Scholar
- Leach, H. M. (2003). Human Domestication Reconsidered. Current Anthropology, 44(3), 349–368. https://doi.org/10.1086/368119.CrossRefGoogle Scholar
- Leach, H. M. (2007). Selection and the Unforeseen Consequences of Domestication. In R. Cassidy & M. Mullin (Eds.), Where the Wild Things Are Now: Domestication Reconsidered. Oxford and New York: Berg.Google Scholar
- Lee, A. J. (2015). Sexual selection and the role of variation in women’s mate preference for masculine traits (PhD Thesis). University of Queensland.Google Scholar
- Lee, A. J., Brooks, R. C., Potter, K. J., & Zietsch, B. P. (2015). Pathogen disgust sensitivity and resource scarcity are associated with mate preference for different waist-to-hip ratios, shoulder-to-hip ratios, and body mass index. Evolution and Human Behavior, 36(6), 480–488. https://doi.org/10.1016/j.evolhumbehav.2015.07.002.CrossRefGoogle Scholar
- Lefevre, C. E., Lewis, G. J., Perrett, D. I., & Penke, L. (2013). Telling facial metrics: Facial width is associated with testosterone levels in men. Evolution and Human Behavior, 34(4), 273–279. https://doi.org/10.1016/j.evolhumbehav.2013.03.005.CrossRefGoogle Scholar
- Leigh, S. R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. Journal of Human Evolution, 23(1), 27–50. https://doi.org/10.1016/0047-2484(92)90042-8.CrossRefGoogle Scholar
- Leutenegger, W., & Shell, B. (1987). Variability and sexual dimorphism in canine size of Australopithecus and extant hominoids. Journal of Human Evolution, 16(4), 359–367. https://doi.org/10.1016/0047-2484(87)90066-2.CrossRefGoogle Scholar
- Li, Y., Bailey, D. H., Winegard, B., Puts, D. A., Welling, L. L. M., & Geary, D. C. (2014). Women’s Preference for Masculine Traits Is Disrupted by Images of Male-on-Female Aggression. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0110497.CrossRefGoogle Scholar
- Lieberman, D. E. (1998). Sphenoid shortening and the evolution of modern human cranial shape. Nature, 393(6681), 158–162. https://doi.org/10.1038/30227.CrossRefGoogle Scholar
- Lieberman, D. E. (2011). The Evolution of the Human Head (1st ed.). Cambridge, Mass: Belknap Press.Google Scholar
- Ligon, J. D., Thornhill, R., Zuk, M., & Johnson, K. (1990). Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl. Animal Behaviour, 40(2), 367–373. https://doi.org/10.1016/S0003-3472(05)80932-7.CrossRefGoogle Scholar
- Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature; London, 445(7130), 843–850. https://doi.org/10.1038/nature05660.CrossRefGoogle Scholar
- Lincoln, G. A. (1989). Seasonal cycles in testicular activity in Mouflon, Soay sheep and domesticated breeds of sheep: Breeding seasons modified by domestication. Zoological Journal of the Linnean Society, 95(2), 137–147. https://doi.org/10.1111/j.1096-3642.1989.tb02307.x.CrossRefGoogle Scholar
- Lincoln, G. A., Lincoln, C. E., & McNeilly, A. S. (1990). Seasonal cycles in the blood plasma concentration of FSH, inhibin and testosterone, and testicular size in rams of wild, feral and domesticated breeds of sheep. Journal of Reproduction and Fertility, 88(2), 623–633. https://doi.org/10.1530/jrf.0.0880623.CrossRefGoogle Scholar
- Lippold, S., Knapp, M., Kuznetsova, T., Leonard, J. A., Benecke, N., Ludwig, A., et al. (2011). Discovery of lost diversity of paternal horse lineages using ancient DNA. Nature Communications, 2, 450. https://doi.org/10.1038/ncomms1447.CrossRefGoogle Scholar
- Little, A. C., Cohen, D. L., Jones, B. C., & Belsky, J. (2007). Human Preferences for Facial Masculinity Change with Relationship Type and Environmental Harshness. Behavioral Ecology and Sociobiology, 61(6), 967–973.CrossRefGoogle Scholar
- Little, A. C., DeBruine, L. M., & Jones, B. C. (2010). Exposure to visual cues of pathogen contagion changes preferences for masculinity and symmetry in opposite-sex faces. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101925. https://doi.org/10.1098/rspb.2010.1925.CrossRefGoogle Scholar
- Little, A. C., Connely, J., Feinberg, D. R., Jones, B. C., & Roberts, S. C. (2011). Human preference for masculinity differs according to context in faces, bodies, voices, and smell. Behavioral Ecology, 22(4), 862–868. https://doi.org/10.1093/beheco/arr061.CrossRefGoogle Scholar
- Liu, A., & Niswander, L. A. (2005). Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Reviews Neuroscience, 6(12), 945–954. https://doi.org/10.1038/nrn1805.CrossRefGoogle Scholar
- Liu, C., Tang, Y., Ge, H., Wang, F., Sun, H., Meng, H., et al. (2014). Increasing breadth of the frontal lobe but decreasing height of the human brain between two Chinese samples from a Neolithic site and from living humans. American Journal of Physical Anthropology, 154(1), 94–103. https://doi.org/10.1002/ajpa.22476.CrossRefGoogle Scholar
- Løtvedt, P., Fallahshahroudi, A., Bektic, L., Altimiras, J., & Jensen, P. (2017). Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiology of Stress, 7, 113–121. https://doi.org/10.1016/j.ynstr.2017.08.002.CrossRefGoogle Scholar
- Marcinkowska, U. M., Rantala, M. J., Lee, A. J., Kozlov, M. V., Aavik, T., Cai, H., et al. (2019). Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-39350-8.CrossRefGoogle Scholar
- Marečková, K., Weinbrand, Z., Chakravarty, M. M., Lawrence, C., Aleong, R., Leonard, G., et al. (2011). Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Hormones and Behavior, 60(5), 681–690. https://doi.org/10.1016/j.yhbeh.2011.09.004.CrossRefGoogle Scholar
- Marshall, F. B., Dobney, K., Denham, T., & Capriles, J. M. (2014). Evaluating the roles of directed breeding and gene flow in animal domestication. Proceedings of the National Academy of Sciences, 111(17), 6153–6158. https://doi.org/10.1073/pnas.1312984110.CrossRefGoogle Scholar
- Matsumoto, T., Sakari, M., Okada, M., Yokoyama, A., Takahashi, S., Kouzmenko, A., & Kato, S. (2013). The Androgen Receptor in Health and Disease. Annual Review of Physiology, 75(1), 201–224. https://doi.org/10.1146/annurev-physiol-030212-183656.CrossRefGoogle Scholar
- Matsuoka, T., Ahlberg, P. E., Kessaris, N., Iannarelli, P., Dennehy, U., Richardson, W. D., et al. (2005). Neural Crest Origins of the Neck and Shoulder. Nature, 436(7049), 347–355. https://doi.org/10.1038/nature03837.CrossRefGoogle Scholar
- McCullough, E. L., Miller, C. W., & Emlen, D. J. (2016). Why Sexually Selected Weapons Are Not Ornaments. Trends in Ecology & Evolution, 31(10), 742–751. https://doi.org/10.1016/j.tree.2016.07.004.CrossRefGoogle Scholar
- McGonnell, I. M., McKay, I. J., & Graham, A. (2001). A Population of Caudally Migrating Cranial Neural Crest Cells: Functional and Evolutionary Implications. Developmental Biology, 236(2), 354–363. https://doi.org/10.1006/dbio.2001.0330.CrossRefGoogle Scholar
- McHenry, H. M. (1994). Tempo and mode in human evolution. Proceedings of the National Academy of Sciences, 91(15), 6780–6786.CrossRefGoogle Scholar
- Mishina, Y., & Snider, T. N. (2014). Neural crest cell signaling pathways critical to cranial bone development and pathology. Experimental Cell Research, 325(2), 138–147. https://doi.org/10.1016/j.yexcr.2014.01.019.CrossRefGoogle Scholar
- Mitteroecker, P., Windhager, S., Müller, G. B., & Schaefer, K. (2015). The Morphometrics of “Masculinity” in Human Faces: E0118374. PLoS One, 10(2). https://doi.org/10.1371/journal.pone.0118374.CrossRefGoogle Scholar
- Monks, D. A., & Holmes, M. M. (2017). Androgen receptors and muscle: A key mechanism underlying life history trade-offs. Journal of Comparative Physiology A, 1–10. https://doi.org/10.1007/s00359-017-1222-4.CrossRefGoogle Scholar
- Montague, M., Li, G., Gandolfi, B., Khan, R. L., Aken, B., Searle, S., … Warren, W. (2014). Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences, 111, 17230–17235. https://doi.org/10.1073/pnas.1410083111 CrossRefGoogle Scholar
- Morey, D. F., & Jeger, R. (2015). Paleolithic dogs: Why sustained domestication then? Journal of Archaeological Science: Reports, 3, 420–428. https://doi.org/10.1016/j.jasrep.2015.06.031.CrossRefGoogle Scholar
- Noden, D. M. (1986). Patterning of avian craniofacial muscles. Developmental Biology, 116(2), 347–356. https://doi.org/10.1016/0012-1606(86)90138-7.CrossRefGoogle Scholar
- Oiso, N., Fukai, K., Kawada, A., & Suzuki, T. (2013). Piebaldism. The Journal of Dermatology, 40(5), 330–335. https://doi.org/10.1111/j.1346-8138.2012.01583.x.CrossRefGoogle Scholar
- Osadchuk, L. V. (1998). Biosynthesis of testosterone in the gonads in silver fox embryos after long-term selection for domesticated behavior. Genetika, 34(7), 941–946.Google Scholar
- Osadchuk, L. V. (2001). The effect of genetic selection for lack of aggression towards humans on male reproductive physiology in the silver fox. Proceedings of the British Society for Animal Science, 16.Google Scholar
- Palvimo, J. J. (2012). The androgen receptor. Molecular and Cellular Endocrinology, 352(1), 1–3. https://doi.org/10.1016/j.mce.2012.01.016.CrossRefGoogle Scholar
- Pavan, W. J., & Tilghman, S. M. (1994). Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 7159–7163.CrossRefGoogle Scholar
- Pendleton, A. L., Shen, F., Taravella, A. M., Emery, S., Veeramah, K. R., Boyko, A. R., & Kidd, J. M. (2018). Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biology, 16, 64. https://doi.org/10.1186/s12915-018-0535-2.CrossRefGoogle Scholar
- Pettenati-Soubayroux, I., Signoli, M., & Dutour, O. (2002). Sexual dimorphism in teeth: Discriminatory effectiveness of permanent lower canine size observed in a XVIIIth century osteological series. Forensic Science International, 126(3), 227–232. https://doi.org/10.1016/S0379-0738(02)00080-4.CrossRefGoogle Scholar
- Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. American Journal of Physical Anthropology, 116(S33), 25–53. https://doi.org/10.1002/ajpa.10011.CrossRefGoogle Scholar
- Plavcan, J. M. (2012). Sexual Size Dimorphism, Canine Dimorphism, and Male-Male Competition in Primates. Human Nature, 23(1), 45–67. https://doi.org/10.1007/s12110-012-9130-3.CrossRefGoogle Scholar
- Plavcan, J. M., & van Schaik, C. P. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. American Journal of Physical Anthropology, 103(1), 37–68. https://doi.org/10.1002/(SICI)1096-8644(199705)103:1<37::AID-AJPA4>3.0.CO;2-A.CrossRefGoogle Scholar
- Polák, J., & Frynta, D. (2009). Sexual size dimorphism in domestic goats, sheep, and their wild relatives. Biological Journal of the Linnean Society, 98(4), 872–883. https://doi.org/10.1111/j.1095-8312.2009.01294.x.CrossRefGoogle Scholar
- Polder, B. J., Hof, M. A. V., der Linden, F. P. G. M. V., & Kuijpers-Jagtman, A. M. (2004). A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dentistry and Oral Epidemiology, 32(3), 217–226. https://doi.org/10.1111/j.1600-0528.2004.00158.x.CrossRefGoogle Scholar
- Polychronis, G., & Halazonetis, D. J. (2014). Shape covariation between the craniofacial complex and first molars in humans. Journal of Anatomy, 225(2), 220–231. https://doi.org/10.1111/joa.12202.CrossRefGoogle Scholar
- Prior, N. H., Yap, K. N., Mainwaring, M. C., Adomat, H. H., Crino, O. L., Ma, C., et al. (2017). Sex steroid profiles in zebra finches: Effects of reproductive state and domestication. General and Comparative Endocrinology, 244, 108–117. https://doi.org/10.1016/j.ygcen.2016.02.018.CrossRefGoogle Scholar
- Puts, D. A., Gaulin, S., & Verdolini, K. (2006). Dominance and the evolution of sexual dimorphism in human voice pitch. Evolution and Human Behavior, 27(4), 283–296. https://doi.org/10.1016/j.evolhumbehav.2005.11.003.CrossRefGoogle Scholar
- Puts, D. A., Jones, B. C., & DeBruine, L. M. (2012). Sexual Selection on Human Faces and Voices. The Journal of Sex Research, 49(2–3), 227–243. https://doi.org/10.1080/00224499.2012.658924 CrossRefGoogle Scholar
- Puts, D. A., Hill, A. K., Bailey, D. H., Walker, R. S., Rendall, D., Wheatley, J. R., et al. (2016). Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proc. R. Soc. B, 283(1829), 20152830. https://doi.org/10.1098/rspb.2015.2830.CrossRefGoogle Scholar
- Quist, M. C., Watkins, C. D., Smith, F. G., Little, A. C., Debruine, L. M., & Jones, B. C. (2012). Sociosexuality Predicts Women’s Preferences for Symmetry in Men’s Faces. Archives of Sexual Behavior; New York, 41(6), 1415–1421. https://doi.org/10.1007/s10508-011-9848-8.CrossRefGoogle Scholar
- Ralls, K. (1976). Mammals in Which Females are Larger Than Males. The Quarterly Review of Biology, 51(2), 245–276.CrossRefGoogle Scholar
- Rensch, B. (1950). Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische Beiträge, 1, 58–69.Google Scholar
- Ribeiro, D. C., Brook, A. H., Hughes, T. E., Sampson, W. J., & Townsend, G. C. (2013). Intrauterine Hormone Effects on Tooth Dimensions. Journal of Dental Research, 92(5), 425–431. https://doi.org/10.1177/0022034513484934.CrossRefGoogle Scholar
- Ruff, C. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211–232.CrossRefGoogle Scholar
- Ruff, C., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387(6629), 173–176. https://doi.org/10.1038/387173a0.CrossRefGoogle Scholar
- Rutberg, S. E., Kolpak, M. L., Gourley, J. A., Tan, G., Henry, J. P., & Shander, D. (2006). Differences in Expression of Specific Biomarkers Distinguish Human Beard from Scalp Dermal Papilla Cells. Journal of Investigative Dermatology, 126(12), 2583–2595. https://doi.org/10.1038/sj.jid.5700454.CrossRefGoogle Scholar
- Ryan, T. M., & Shaw, C. N. (2015). Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proceedings of the National Academy of Sciences, 112(2), 372–377. https://doi.org/10.1073/pnas.1418646112.CrossRefGoogle Scholar
- Sánchez-Villagra, M. R., & van Schaik, C. P. (2019). Evaluating the self-domestication hypothesis of human evolution. Evolutionary Anthropology: Issues, News, and Reviews, 28(3), 133–143. https://doi.org/10.1002/evan.21777.CrossRefGoogle Scholar
- Sánchez-Villagra, M. R., Geiger, M., & Schneider, R. A. (2016). The taming of the neural crest: A developmental perspective on the origins of morphological covariation in domesticated mammals. Open Science, 3(6), 160107. https://doi.org/10.1098/rsos.160107.CrossRefGoogle Scholar
- Santagati, F., & Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. Nature Reviews. Neuroscience; London, 4(10), 806–818. https://doi.org/10.1038/nrn1221.CrossRefGoogle Scholar
- Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R., & Francis-West, P. H. (2008). Larsen’s Human Embryology (4th ed.). Philadelphia: Churchill Livingstone.Google Scholar
- Schwartz, G. T., & Dean, M. C. (2005). Sexual dimorphism in modern human permanent teeth. American Journal of Physical Anthropology, 128(2), 312–317. https://doi.org/10.1002/ajpa.20211.CrossRefGoogle Scholar
- Scott, I. M. L., Clark, A. P., Boothroyd, L. G., & Penton-Voak, I. S. (2013). Do men’s faces really signal heritable immunocompetence? Behavioral Ecology, 24(3), 579–589. https://doi.org/10.1093/beheco/ars092.CrossRefGoogle Scholar
- Sell, A., Hone, L. S., & Pound, N. (2012). The Importance of Physical Strength to Human Males. Human Nature : An Interdisciplinary Biosocial Perspective; New York, 23(1), 30–44. https://doi.org/10.1007/s12110-012-9131-2.CrossRefGoogle Scholar
- Shearer, B. M., Sholts, S. B., Garvin, H. M., & Wärmländer, S. K. T. S. (2012). Sexual dimorphism in human browridge volume measured from 3D models of dry crania: A new digital morphometrics approach. Forensic Science International, 222(1–3), 400.e1–400.e5. https://doi.org/10.1016/j.forsciint.2012.06.013 CrossRefGoogle Scholar
- Simões-Costa, M., & Bronner, M. E. (2015). Establishing neural crest identity: A gene regulatory recipe. Development, 142(2), 242–257. https://doi.org/10.1242/dev.105445.CrossRefGoogle Scholar
- Singh, N., Albert, F. W., Plyusnina, I., Trut, L. N., Pӓӓbo, S., & Harvati, K. (2017). Facial shape differences between rats selected for tame and aggressive behaviors. PLOS ONE, 12(4), e0175043. https://doi.org/10.1371/journal.pone.0175043.CrossRefGoogle Scholar
- Slominski, A., Tobin, D. J., Shibahara, S., & Wortsman, J. (2004). Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiological Reviews, 84(4), 1155–1228. https://doi.org/10.1152/physrev.00044.2003.CrossRefGoogle Scholar
- Sterelny, K. (2011). From hominins to humans: How sapiens became behaviourally modern. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566), 809–822. https://doi.org/10.1098/rstb.2010.0301.CrossRefGoogle Scholar
- Sterelny, K. (2012). The Evolved Apprentice. Caimbridge, MA: MIT Press.CrossRefGoogle Scholar
- Sterelny, K. (2018). Adaptation without Insight? In R. Boyd, A Different Kind of Animal (pp. 135–151). Retrieved from http://www.jstor.org/stable/j.ctvc7799z.8 CrossRefGoogle Scholar
- Theofanopoulou, C., Gastaldon, S., O’Rourke, T., Samuels, B. D., Messner, A., Martins, P. T., et al. (2017). Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One; San Francisco, 12(10), e0185306. https://doi.org/10.1371/journal.pone.0185306.CrossRefGoogle Scholar
- Thomas, J., & Kirby, S. (2018). Self domestication and the evolution of language. Biology & Philosophy, 33(1–2), 9. https://doi.org/10.1007/s10539-018-9612-8.CrossRefGoogle Scholar
- Tinghitella, R. M., Lackey, A. C. R., Martin, M., Dijkstra, P. D., Drury, J. P., Heathcote, R., et al. (2018). On the role of male competition in speciation: A review and research agenda. Behavioral Ecology, 29(4), 783–797. https://doi.org/10.1093/beheco/arx151.CrossRefGoogle Scholar
- Trivers, R. L. (1972). Parental investment and sexual selection. In B. M. Campbell (Ed.), Sexual Selection and the Descent of Man, 1871–1971 (pp. 136–179). Chicago: Aldine.Google Scholar
- Trut, L. N. (1999). Early Canid Domestication: The Farm-Fox Experiment. American Scientist, 87(2), 160. https://doi.org/10.1511/1999.2.160.CrossRefGoogle Scholar
- Trut, L. N., Plyusnina, I. Z., & Oskina, I. N. (2004). An Experiment on Fox Domestication and Debatable Issues of Evolution of the Dog. Russian Journal of Genetics, 40(6), 644–655. https://doi.org/10.1023/B:RUGE.0000033312.92773.c1.CrossRefGoogle Scholar
- Trut, L. N., Oskina, I. N., & Kharlamova, A. V. (2009). Animal evolution during domestication: The domesticated fox as a model. BioEssays, 31(3), 349–360. https://doi.org/10.1002/bies.200800070.CrossRefGoogle Scholar
- Turner, G. F., & Burrows, M. T. (1995). A model of sympatric speciation by sexual selection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1359), 287–292. https://doi.org/10.1098/rspb.1995.0093.CrossRefGoogle Scholar
- Ueharu, H., Yoshida, S., Kikkawa, T., Kanno, N., Higuchi, M., Kato, T., et al. (2017). Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. Journal of Anatomy, 230(3), 373–380. https://doi.org/10.1111/joa.12572.CrossRefGoogle Scholar
- UNODC. (2013). Global Study On Homicide 2013: Trends, Contexts, Data (No. 14.IV.1). Retrieved from United Nations Office on Drugs and Crime website: http://www.psychologytoday.com/blog/homo-aggressivus/201409/male-aggression
- Ursi, W. J. S., Trotman, C.-A., McNamara, J. A., & Behrents, R. G. (1993). Sexual dimorphism in normal craniofacial growth. The Angle Orthodontist, 63(1), 47–56. https://doi.org/10.1043/0003-3219(1993)063<0047:SDINCG>2.0.CO;2.
- Valasek, P., Theis, S., Krejci, E., Grim, M., Maina, F., Shwartz, Y., et al. (2010). Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. Journal of Anatomy, 216(4), 482–488. https://doi.org/10.1111/j.1469-7580.2009.01200.x.CrossRefGoogle Scholar
- Verdonck, A., De Ridder, L., Verbeke, G., Bourguignon, J. P., Carels, C., Kühn, E. R., … de Zegher, F. (1998). Comparative effects of neonatal and prepubertal castration on craniofacial growth in rats. Archives of Oral Biology, 43(11), 861–871. https://doi.org/10.1016/S0003-9969(98)00071-5.CrossRefGoogle Scholar
- Verdonck, A., Gaethofs, M., Carels, C., & de Zegher, F. (1999). Effect of low-dose testosterone treatment on craniofacial growth in boys with delayed puberty. European Journal of Orthodontics, 21(2), 137–143. https://doi.org/10.1093/ejo/21.2.137.CrossRefGoogle Scholar
- Wells, J. C. K. (2012). Sexual dimorphism in body composition across human populations: Associations with climate and proxies for short- and long-term energy supply. American Journal of Human Biology, 24(4), 411–419. https://doi.org/10.1002/ajhb.22223.CrossRefGoogle Scholar
- Whitehouse, A. J. O., Gilani, S. Z., Shafait, F., Mian, A., Tan, D. W., Maybery, M. T., et al. (2015). Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proceedings of the Royal Society B: Biological Sciences, 282(1816). https://doi.org/10.1098/rspb.2015.1351.CrossRefGoogle Scholar
- Wiercinski, A. (1979). Has the brain size decreased since the upper paleolithic period ? / La taille du cerveau a-t-elle diminué depuis le Paléolithique supérieur ? (en anglais). Bulletins et Mémoires de La Société d’anthropologie de Paris, 6(4), 419–427. https://doi.org/10.3406/bmsap.1979.1979.CrossRefGoogle Scholar
- Wilkins, A. S. (2017). Revisiting two hypotheses on the “domestication syndrome” in light of genomic data. Vavilov Journal of Genetics and Breeding 21(14). https://doi.org/10.18699/VJ17.262 CrossRefGoogle Scholar
- Wilkins, A. S. (2019). A striking example of developmental bias in an evolutionary process: The “domestication syndrome.” Evolution & Development, 0(0), 1–11. https://doi.org/10.1111/ede.12319
- Wilkins, A. S., Wrangham, R. W., & Tecumseh Fitch, W. (2014). The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics, 197(3), 795–808. https://doi.org/10.1534/genetics.114.165423.CrossRefGoogle Scholar
- Wilson, M., & Daly, M. (1985). Competitiveness, risk taking, and violence: The young male syndrome. Ethology and Sociobiology, 6(1), 59–73. https://doi.org/10.1016/0162-3095(85)90041-X.CrossRefGoogle Scholar
- Wilson, M. J., & Spaziani, E. (1973). Testosterone regulation of pigmentation in scrotal epidermis of the rat. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 140(4), 451–458. https://doi.org/10.1007/BF00306672.CrossRefGoogle Scholar
- Windhager, S., Schaefer, K., & Fink, B. (2011). Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. American Journal of Human Biology: The Official Journal of the Human Biology Council, 23(6), 805–814. https://doi.org/10.1002/ajhb.21219.CrossRefGoogle Scholar
- Wrangham, R. W. (2014). Did Homo sapiens Self-Domesticate? Symposia presented at the Center for Academic Research and Training in. Domestication and Human Evolution, Salk Institute, La Jolla, CA: Anthropogeny Retrieved from https://carta.anthropogeny.org/events/sessions/did-homo-sapiens-self-domesticate.Google Scholar
- Wrangham, R. W. (2018). Two types of aggression in human evolution. Proceedings of the National Academy of Sciences, 115(2), 245–253. https://doi.org/10.1073/pnas.1713611115.CrossRefGoogle Scholar
- Wrangham, R. W. (2019a). Hypotheses for the Evolution of Reduced Reactive Aggression in the Context of Human Self-Domestication. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01914.
- Wrangham, R. W. (2019b). The Goodness Paradox: The Strange Relationship Between Peace and Violence in Human Evolution. Retrieved from https://www.booktopia.com.au/the-goodness-paradox-richard-wrangham/prod9781781255834.html
- Wrangham, R. W., & Glowacki, L. (2012). Intergroup Aggression in Chimpanzees and War in Nomadic Hunter-Gatherers. Human Nature, 23(1), 5–29. https://doi.org/10.1007/s12110-012-9132-1.CrossRefGoogle Scholar
- Wright, D. (2015). The Genetic Architecture of Domestication in Animals. Bioinformatics and Biology Insights, 9(Suppl 4), 11–20. https://doi.org/10.4137/BBI.S28902.CrossRefGoogle Scholar
- Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214. https://doi.org/10.1016/0022-5193(75)90111-3.CrossRefGoogle Scholar
- Zahavi, A., & Zahavi, A. (1999). The Handicap Principle: A Missing Piece of Darwin’s Puzzle. OUP USA.Google Scholar
- Zaidi, A. A., White, J. D., Mattern, B. C., Liebowitz, C. R., Puts, D. A., Claes, P., & Shriver, M. D. (2019). Facial masculinity does not appear to be a condition-dependent male ornament and does not reflect MHC heterozygosity in humans. Proceedings of the National Academy of Sciences, 201808659. https://doi.org/10.1073/pnas.1808659116.CrossRefGoogle Scholar
- Zeder, M. A. (2008). Animal Domestication in the Zagros: An Update and Directions for Future Research. In E. Vila, L. Goucherin, A. Choyke, & H. Buitenhuis (Eds.), Archaeozoology of the Near East VIII (Vol. 49, pp. 243–277). Retrieved from http://www.persee.fr/doc/mom_1955-4982_2008_act_49_1_2709
- Zeder, M. A. (2012). The Domestication of Animals. Journal of Anthropological Research, 68(2), 161–190.CrossRefGoogle Scholar
- Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112.CrossRefGoogle Scholar
- Zeder, M. A. (2017). Domestication as a model system for the extended evolutionary synthesis (Vol. 7). https://doi.org/10.1098/rsfs.2016.0133.CrossRefGoogle Scholar
- Zeuner, F. E. (1963). A history of domesticated animals. London: Hutchinson.Google Scholar
- Zipser, B., Schleking, A., Kaiser, S., & Sachser, N. (2014). Effects of domestication on biobehavioural profiles: A comparison of domestic guinea pigs and wild cavies from early to late adolescence. Frontiers in Zoology, 11, 30. https://doi.org/10.1186/1742-9994-11-30.CrossRefGoogle Scholar
- Zohary, D., Tchernov, E., & Horwitz, L. K. (1998). The role of unconscious selection in the domestication of sheep and goats. Journal of Zoology, 245(2), 129–135. https://doi.org/10.1111/j.1469-7998.1998.tb00082.x.CrossRefGoogle Scholar