Skip to main content
Log in

Testing a Curvilinear Relationship between Chemosensory Responsivity and Avoidance Motivation

  • ORIGINAL ARTICLE
  • Published:
Adaptive Human Behavior and Physiology Aims and scope Submit manuscript

Abstract

Approach and avoidance motivations underlie much of human behavior. This paper examines an as-yet under-investigated contributor to those motivations – chemosensory responsivity. Based on the logic that the chemical senses help the perceiver to detect ecological threats, we predicted that individual differences in chemosensory responsivity may predict approach-avoidance motivations. Specifically, because people with below or above average sensory responsivity may be unable to reliably discriminate threats from nonthreats in their environment, they may consequently adopt a compensatory shift from approach to avoidance motivations. The current project tested for such a curvilinear relationship between chemosensory responsivity and approach-avoidance motivation. In Study 1, chemosensory responsivity was indexed by combined performance on the University of Pennsylvania Smell Identification Test with detection of bitterness in a taste strip containing phenylthiocarbamide. Approach versus avoidance motivation was measured with the line bisection task. Study 2 provided a conceptual replication using self-report measures. Study 3 used a new psychophysical measure directly assessing olfactory detection thresholds, and extended the investigation to perceptions of threat-related facial expressions. In all three studies, results revealed a quadratic effect of sensory responsivity on approach-avoidance motivation, such that participants scoring relatively low or relatively high on sensory responsivity displayed higher levels of avoidance-related cognition. Elucidating the link between sensory processing and general motivational orientations has the potential to inform understanding of higher-order social cognitive functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Following Cohen, Cohen, West and Aiken (2003), we tested for influential data points by computing Cook’s Distance for overall influence and DFBETAS for individual regression coefficients. The most extreme scores for Cook’s Distance (.22), and the DFBETAS for the linear term (.002) and quadratic term (.003) all fell within acceptable ranges.

  2. Following Cohen et al. (2003), we tested for influential data points by computing Cook’s Distance for overall influence and DFBETAS for individual regression coefficients. The most extreme scores for Cook’s Distance (.29), and the DFBETAS for the linear term (−.41) and quadratic term (.43) all fell within acceptable ranges.

  3. We conducted ancillary analyses to examine the effect of CSS on the separate BAS and BIS scales. Regressing BAS on CSS and its square yielded a marginal linear effect (β = .22, t(71) = 1.91, p = .06, rpartial = .22), and a marginal quadratic effect in the predicted direction (β = −.20, t(71) = −1.76, p = .08, rpartial = −.20). For BIS, analyses yielded no significant linear (β = .08, t(71) = .71, p = .48, rpartial = .08) or quadratic effects (β = .15, t(71) = 1.29, p = .20, rpartial = .15), although the quadratic effect was again in the predicted direction.

  4. Following Cohen et al. (2003), we tested for influential data points by computing Cook’s Distance for overall influence and DFBETAS for individual regression coefficients. The most extreme scores for Cook’s Distance (.16), and the DFBETAS for the linear term (−.46) and quadratic term (−.55) all fell within acceptable ranges. This was also true for the analysis on threat emotion errors: Cook’s Distance (.07), DFBETAS linear (−.35) and quadratic (.33) terms.

References

  • Blakeslee, A. F. (1932). Genetics of sensory thresholds: Taste for phenyl-thio-carbamide. Proceedings of the National Academy of Sciences of the United States of America, 18, 120–130.

    Article  Google Scholar 

  • Buck, R. (1999). The biological affects: A typology. Psychological Review, 106, 301–336.

    Article  Google Scholar 

  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333.

    Article  Google Scholar 

  • Cieslak, K., Walsh-Messinger, J., Stanford, A., Vaez-Azizi, L., Antonius, D., Harkavy-Friedman, J., . . . Malaspina, D. (2015). Olfactory performance segregates effects of anhedonia and anxiety on social function in patients with schizophrenia. Journal of Psychiatry and Neuroscience, 40(6): 387–393. https://doi.org/10.1503/jpn.140268.

  • Clepce, M., Reich, K., Gossler, A., Kornhuber, J., & Thuerauf, N. (2012). Olfactory abnormalities in anxiety disorders. Neuroscience Letters, 511, 43–46. https://doi.org/10.1016/j.neulet.2012.01.034.

    Article  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. New York: Taylor and Francis.

    Google Scholar 

  • Cowey, A., & Rolls, E. T. (1974). Human cortical magnification factor and its relation to visual acuity. Experimental Brain Research, 21, 447–454.

    Article  Google Scholar 

  • Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology I. Journal of Personality and Social Psychology, 58, 330–341.

    Article  Google Scholar 

  • Doty, R. L., Shaman, P., & Dann, M. (1983). Development of the University of Pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiology & Behavior, 32, 489–502.

    Article  Google Scholar 

  • Elliot, A. J. (2006). Approach and avoidance motivation. Motivation and Emotion, 30, 111–116.

    Article  Google Scholar 

  • Elliot, A. J. (Ed.). (2008). Handbook of approach and avoidance motivation. New York: Psychology Press.

    Google Scholar 

  • Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: Approach and avoidance temperaments and goals. Journal of Personality and Social Psychology, 82, 804–818.

    Article  Google Scholar 

  • Elliot, A. J., Chirkov, V. I., Kim, Y., & Sheldon, K. M. (2001). A cross-cultural analysis of avoidance (relative to approach) personal goals. Psychological Science, 12, 505–510.

    Article  Google Scholar 

  • Esteves, F., Dimberg, U., & Ohman, A. (1994). Automatically elicited fear: Conditioned skin conductance responses to masked facial expressions. Cognition and Emotion, 8, 393–413.

    Article  Google Scholar 

  • Ferdenzi, C., Roberts, S.C., Schirmer, A., Delplanque, S., Cekic, S., Porcherot, C. … Grandjean, D. (2013). Variability of affective responses to odors: Culture, gender, and olfactory knowledge. Chemical Senses, 38, 175–186.

  • Fessler, D. M. T., Eng, S. J., & Navarrete, C. D. (2005). Elevated disgust sensitivity in the first trimester of pregnancy. Evolution and Human Behavior, 26, 344–351.

    Article  Google Scholar 

  • Fox, E., Lester, V., Russo, R., Bowles, R. J., Pichler, A., & Dutton, K. (2000). Facial expressions of emotion: Are angry faces detected more efficiently? Cognition and Emotion, 14, 61–92.

    Article  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966/1974). Signal detection theory and psychophysics (a reprint, with corrections of the original 1966 ed.). Huntington: Robert E. Krieger Publishing Co.

  • Harmon-Jones, E. (2003). Clarifying the emotive functions of asymmetrical frontal cortical activity. Psyhophysiology, 40, 838–848.

    Article  Google Scholar 

  • Harmon-Jones, E., & Peterson, C. K. (2009). Suping body position reduces neural response to anger evocation. Psychological Science, 20, 1209–1210.

    Article  Google Scholar 

  • Haselton, M. G., & Nettle, D. (2006). The paranoid optimist: An integrative evolutionary model of cognitive biases. Personality and Social Psychology Review, 10(1), 47–66.

    Article  Google Scholar 

  • Havlicek, J., Novakova, L., Vondrova, M., Kuebena, A. A., Valentova, J., & Roberts, S. C. (2012). Olfactory perception is positively linked to anxiety in young adults. Perception, 41, 1246–1261. https://doi.org/10.1068/p7244.

    Article  Google Scholar 

  • Hofmann, W., Friese, M., & Gschwendner, T. (2009). Men on the “pull”: Automatic approach-avoidance tendencies and sexual interest behavior. Social Psychology, 40, 73–78.

    Article  Google Scholar 

  • Hummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2006). Normative data for the “Sniffin’ sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects. European Archives of Oto-Rhino-Laryngology, 264, 237–243.

    Article  Google Scholar 

  • Jackson, R. E., & Cormack, J. K. (2008). Evolved navigation theory and the environmental vertical illusion. Evolution and Human Behavior, 29, 299–304.

    Article  Google Scholar 

  • Karnekull, S. C., Jonsson, F. U., Larsson, M., & Olofsson, J. K. (2011). Affected by smells? Environment chemical responsivity predicts odor perception. Chemical Senses, 36, 641–648.

    Article  Google Scholar 

  • Kavaliers, M., Choleris, E., Agmo, A., & Pfaff, D. W. (2004). Olfactory-mediated parasite recognition and avoidance: Linking genes to behavior. Hormones and Behavior, 46, 272–283.

    Article  Google Scholar 

  • Kavaliers, M., Choleris, E., & Pfaff, D. W. (2005). Recognition and avoidance of the odors of parasitized conspecifics and predators: Differential genomic correlates. Neuroscience and Biobehavioral Reviews, 29, 1347–1359.

    Article  Google Scholar 

  • Krusemark, E. A., Novak, L. R., Gitelman, D. R., & Li, W. (2013). When the sense of smell meets emotion: Anxiety-state-dependent olfactory processing and neural circuitry adaptation. The Journal of Neuroscience, 33, 15324–15332.

    Article  Google Scholar 

  • Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.

    Article  Google Scholar 

  • Li. (2014). Learning to smell danger: Acquired associative representation of threat in the olfactory cortex. Frontiers in Behavioral Neuroscience, 8, 98. https://doi.org/10.3389/fnbeh.2014.00098.

    Google Scholar 

  • Maner, J. K., Kaschak, M. P., & Jones, J. L. (2010). Social power and the advent of action. Social Cognition, 28, 122–132.

    Article  Google Scholar 

  • Milner, A. D., Brechmann, M., & Pagliarini, L. (1992). To halve and to halve not: An analysis of line bisection judgements in normal subjects. Neuropsychologia, 30, 515–526.

    Article  Google Scholar 

  • Montagne, B., Kessels, R. P. C., de Haan, E. H. F., & Perrett, D. I. (2007). The emotion recognition task: A paradigm to measure perception of facial emotional expressions at different intensities. Perceptual and Motor Skills, 104, 5899–5598.

    Article  Google Scholar 

  • Mortensen, C. R., Becker, D. V., Ackerman, J. M., Neuberg, S. L., & Kenrick, D. T. (2010). Infection breeds reticence: The effects of disease salience on self-perceptions of personality and behavioral avoidance tendencies. Psychological Science, 21, 440–447.

    Article  Google Scholar 

  • Nash, K., McGregor, I., & Inzlicht, M. (2010). Line bisection as a neural marker of approach motivation. Psychophysiology, 47, 979–983. https://doi.org/10.1068/p7244.

    Google Scholar 

  • Neuberg, S. L., Kenrick, D. T., & Schaller, M. (2011). Human threat management systems: Self-protection and disease avoidance. Neuroscience & Biobehavioral Reviews, 35, 1042–1051.

    Article  Google Scholar 

  • Neuhoff, J. G. (2001). An adaptive bias in the perception of looming in auditory motion. Ecological Psychology, 13, 87–110.

    Article  Google Scholar 

  • Nordin, S., Millqvist, E., Lowhagen, O., & Bende, M. (2003). The chemical sensitivity scale: Psychometric properties and comparison with the noise sensitivity scale. Journal of Environmental Psychology, 23, 359–367.

    Article  Google Scholar 

  • Oaten, M., Stevenson, R. J., & Case, T. I. (2009). Disgust as a disease-avoidance mechanism. Psychological Bulletin, 135, 303–321.

    Article  Google Scholar 

  • Oaten, M. J., Stevenson, R. J., & Case, T. I. (2017). Compensatory up-regulation of behavioral disease avoidance in immune-compromised people with rheumatoid arthritis. Evolution and Human Behavior, 38, 350–356.

    Article  Google Scholar 

  • Ohman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and learning. Psychological Review, 108(3), 483–522.

    Article  Google Scholar 

  • Parkinson, B. (2005). Do facial movements express emotions or communicate motives? Personality and Social Psychology Review, 9, 278–311.

    Article  Google Scholar 

  • Pichon, W., de Gelder, B., & Grezes, J. (2009). Two difference faces of threat. Comparing the neural systems for recognizing fear and anger in dynamic body expressions. NeuroImage, 47, 1879–1883.

    Article  Google Scholar 

  • Rozin, P., Lowery, L., & Ebert, R. (1994). Varieties of disgust faces and the structure of disgust. Journal of Personality and Social Psychology, 66, 870–881.

    Article  Google Scholar 

  • Ryan, S., Oaten, M., Stevenson, R. J., & Case, T. I. (2012). Facial disfigurement is treated like an infectious disease. Evolution and Human Behavior, 33, 639–646.

    Article  Google Scholar 

  • Smeets, M. A. M., & Dalton, P. H. (2005). Evaluating the human response to chemicals: Odor, irritation, and non-sensory factors. Environmental Toxicology and Pharmacology, 19, 581–588.

    Article  Google Scholar 

  • Suzuki, Y., Critchley, H. D., Rowe, A., Howlin, P., & Murphy, D. G. M. (2003). Impaired olfactory identification in Asperger’s syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 15(1), 105–107.

    Article  Google Scholar 

  • Tybur, J. M., Bryan, A. D., Magnan, R. E., & Caldwell Hooper, A. E. (2011). Smells like safe sex: Olfactory pathogen primes increase intentions to use condoms. Psychological Science, 22, 478–480.

    Article  Google Scholar 

  • Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: A comparison of three personality taxonomies. Journal of Personality, 67, 761–791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam J. Fay or Emily R. Bovier.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fay, A.J., Bovier, E.R. Testing a Curvilinear Relationship between Chemosensory Responsivity and Avoidance Motivation. Adaptive Human Behavior and Physiology 4, 207–222 (2018). https://doi.org/10.1007/s40750-018-0088-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-018-0088-1

Keywords

Navigation