Does Exogenous Testosterone Modulate Men’s Ratings of Facial Dominance or Trustworthiness?

  • Brian M. Bird
  • Shawn N. Geniole
  • Anthony C. Little
  • Benjamin J. P. Moreau
  • Triana L. Ortiz
  • Bernard Goldfarb
  • Pierre L. Bonin
  • Justin M. Carré
ORIGINAL ARTICLE

Abstract

Previous research indicates that men’s testosterone levels, or personality and contextual variables known to influence testosterone levels, predict men’s attributions of social and personality characteristics from faces. However, the correlational nature of many of these past findings precludes our ability to establish causal pathways. Here, across two pharmacological challenge experiments, we examined the extent to which testosterone reduced men’s perceptions of trustworthiness from emotionally-neutral faces (Experiment 1, N = 30, within-subjects design) or sensitivity to dominance from men’s faces that varied in characteristically dominant shape (Experiment 2, N = 117, between-subjects design). Results from Experiment 1 showed that administration of testosterone did not significantly lower men’s perceptions of trustworthiness. An unexpected order effect (i.e., drug x order of administration interaction) showed that trustworthiness ratings were higher after testosterone, but only if men received testosterone on the first day and placebo on the second day; importantly, this effect was directionally opposite to that reported in the literature and to that predicted for the present study. Experiment 2 demonstrated that dominance perceptions did not vary as a function of whether men received testosterone or placebo. Supplementary analyses with linear mixed effects generally support the main findings across experiments, but also provide more nuanced details involving exploratory individual difference variables. Results from the present experiments provide important information to a growing body of research examining testosterone and complex social processes, and may help inform future research on the topic.

Keywords

Testosterone Hormones Trust Trustworthiness Dominance Masculinity Facial perception Instrasexual competition Sexual dimorphism Rivalry 

Supplementary material

40750_2017_79_MOESM1_ESM.docx (76 kb)
ESM 1(DOCX 76 kb)

References

  1. Apicella, C. L., Dreber, A., & Mollerstrom, J. (2014). Salivary testosterone change following monetary wins and losses predicts future financial risk-taking. Psychoneuroendocrinology, 39, 58–64. https://doi.org/10.1016/j.psyneuen.2013.09.025.CrossRefGoogle Scholar
  2. Arnocky, S., Taylor, S. M., Olmstead, N. A., & Carré, J. M. (2016). The effects of exogenous testosterone on men’s moral decision-making. Adaptive Human Behavior and Physiology, 1–13. doi:https://doi.org/10.1007/s40750-016-0046-8.
  3. Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects models. Frontiers in Psychology, 4, 328.CrossRefGoogle Scholar
  4. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68(3), 255–278.CrossRefGoogle Scholar
  5. Bates, D., Maechler, B. B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.
  6. Beehner, J. C., Bergman, T. J., Cheney, D. L., Seyfarth, R. M., & Whitten, P. L. (2006). Testosterone predicts future dominance rank and mating activity among male chacma baboons. Behavioral Ecology and Sociobiology, 59, 469–479. https://doi.org/10.1007/s00265-005-0071-2.CrossRefGoogle Scholar
  7. Benson, P. J., & Perrett, D. I. (1993). Extracting prototypical facial images from exemplars. Perception, 22(3), 257–262. https://doi.org/10.1068/p220257.CrossRefGoogle Scholar
  8. Bird, B. M., Welling, L. L., Ortiz, T. L., Moreau, B. J., Hansen, S., Emond, M., et al. (2016a). Effects of exogenous testosterone and mating context on men's preferences for female facial femininity. Hormones and Behavior, 85, 76–85. https://doi.org/10.1016/j.yhbeh.2016.08.003.CrossRefGoogle Scholar
  9. Bird, B. M., Jofré, V. S. C., Geniole, S. N., Welker, K. M., Drug, S., Maestripieri, D., et al. (2016b). Does the facial width-to-height ratio map onto variability in men's testosterone concentrations? Evolution and Human Behavior, 37(5), 392–398. https://doi.org/10.1016/j.evolhumbehav.2016.03.004.CrossRefGoogle Scholar
  10. Boksem, M. A., Mehta, P. H., Van den Bergh, B., van Son, V., Trautmann, S. T., Roelofs, K., et al. (2013). Testosterone inhibits trust but promotes reciprocity. Psychological Science, 24(11), 2306–2314. https://doi.org/10.1177/0956797613495063.CrossRefGoogle Scholar
  11. Bos, P. A., Terburg, D., & van Honk, J. (2010). Testosterone decreases trust in socially naive humans. Proceedings of the National Academy of Sciences, 107(22), 9991–9995. https://doi.org/10.1073/pnas.0911700107.CrossRefGoogle Scholar
  12. Bos, P. A., Panksepp, J., Bluthé, R. M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social–emotional behavior: a review of single administration studies. Frontiers in Neuroendocrinology, 33(1), 17–35. https://doi.org/10.1016/j.yfrne.2011.01.002.CrossRefGoogle Scholar
  13. Burnham, T. C., Chapman, J. F., Gray, P. B., McIntyre, M. H., Lipson, S. F., & Ellison, P. T. (2003). Men in committed, romantic relationships have lower testosterone. Hormones and Behavior, 44(2), 119–122. https://doi.org/10.1016/S0018-506X(03)00125-9.CrossRefGoogle Scholar
  14. Buunk, A. P., Park, J. H., Zurriaga, R., Klavina, L., & Massar, K. (2008). Height predicts jealousy differently for men and women. Evolution and Human Behavior, 29(2), 133–139. https://doi.org/10.1016/j.evolhumbehav.2007.11.006.CrossRefGoogle Scholar
  15. Carré, J. M., & McCormick, C. M. (2008). Aggressive behavior and change in salivary testosterone concentrations predict willingness to engage in a competitive task. Hormones and Behavior, 54(3), 403–409. https://doi.org/10.1016/j.yhbeh.2008.04.008.CrossRefGoogle Scholar
  16. Carré, J. M., & Olmstead, N. A. (2015). Social neuroendocrinology of human aggression: examining the role of competition-induced testosterone dynamics. Neuroscience, 286, 171–186.CrossRefGoogle Scholar
  17. Carré, J. M., McCormick, C. M., & Mondloch, C. J. (2009a). Facial structure is a reliable cue of aggressive behavior. Psychological Science, 20, 1194–1198. https://doi.org/10.1111/j.1467-9280.2009.02423.x.CrossRefGoogle Scholar
  18. Carré, J. M., Putnam, S. K., & McCormick, C. M. (2009b). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34(4), 561–570. https://doi.org/10.1016/j.psyneuen.2008.10.018.CrossRefGoogle Scholar
  19. Carré, J. M., Campbell, J. A., Lozoya, E., Goetz, S. M., & Welker, K. M. (2013). Changes in testosterone mediate the effect of winning on subsequent aggressive behaviour. Psychoneuroendocrinology, 38(10), 2034–2041. https://doi.org/10.1016/j.psyneuen.2013.03.008.CrossRefGoogle Scholar
  20. Carré, J. M., Baird-Rowe, C. D., & Hariri, A. R. (2014). Testosterone responses to competition predict decreased trust ratings of emotionally neutral faces. Psychoneuroendocrinology, 49, 79–83. https://doi.org/10.1016/j.psyneuen.2014.06.011.CrossRefGoogle Scholar
  21. Carré, J. M., Ortiz, T. L., Labine, B., Moreau, B. J., Viding, E., Neumann, C. S., & Goldfarb, B. (2015). Digit ratio (2D: 4D) and psychopathic traits moderate the effect of exogenous testosterone on socio-cognitive processes in men. Psychoneuroendocrinology, 62, 319–326. https://doi.org/10.1016/j.psyneuen.2015.08.023.CrossRefGoogle Scholar
  22. Carré, J. M., Geniole, S. N., Ortiz, T. L., Bird, B. M., Videto, A., & Bonin, P. L. (2017). Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biological Psychiatry, 82, 249–256.CrossRefGoogle Scholar
  23. R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  24. Eisenegger, C., von Eckardstein, A., Fehr, E., & von Eckardstein, S. (2013). Pharmacokinetics of testosterone and estradiol gel preparations in healthy young men. Psychoneuroendocrinology, 38(2), 171–178. https://doi.org/10.1016/j.psyneuen.2012.05.018.CrossRefGoogle Scholar
  25. Fink, B., Neave, N., & Seydel, H. (2007). Male facial appearance signals physical strength to women. American Journal of Human Biology, 19(1), 82–87. https://doi.org/10.1002/ajhb.20583.CrossRefGoogle Scholar
  26. Foradori, C. D., Weiser, M. J., & Handa, R. J. (2008). Non-genomic actions of androgens. Frontiers in Neuroendocrinology, 29(2), 169–181. https://doi.org/10.1016/j.yfrne.2007.10.005.CrossRefGoogle Scholar
  27. Fox, J., & Weisberg, S. (2011). An an {R} companion to applied regression (5th ed.). Thousand Oaks: Sage.Google Scholar
  28. Geniole, S. N., Bird, B. M., Ruddick, E. L., & Carré, J. M. (2017). Effects of competition outcome on testosterone concentrations in humans: an updated meta-analysis. Hormones and Behavior, 92, 37–50. https://doi.org/10.1016/j.yhbeh.2016.10.002.
  29. Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences, 108(39), 16194–16199. https://doi.org/10.1073/pnas.1105403108.CrossRefGoogle Scholar
  30. Goetz, S. M., Tang, L., Thomason, M. E., Diamond, M. P., Hariri, A. R., & Carré, J. M. (2014). Testosterone rapidly increases neural reactivity to threat in healthy men: a novel two-step pharmacological challenge paradigm. Biological Psychiatry, 76(4), 324–331. https://doi.org/10.1016/j.biopsych.2014.01.016.CrossRefGoogle Scholar
  31. Gray, P. B., Chapman, J. F., Burnham, T. C., McIntyre, M. H., Lipson, S. F., & Ellison, P. T. (2004). Human male pair bonding and testosterone. Human Nature, 15(2), 119–131. https://doi.org/10.1007/s12110-004-1016-6.CrossRefGoogle Scholar
  32. Hansen, S., McAuliffe, J., Goldfarb, B., & Carré, J. M. (2017). Testosterone influences volitional, but not reflexive orienting of attention in human males. Physiology & Behavior, 175, 82–87.CrossRefGoogle Scholar
  33. Hughes, J. (2017). Reghelper: helper functions for regression analysis. R package, version 0.3.3. https://CRAN.R-project.org/package=reghelper.
  34. IBM Corp. (2011). IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.Google Scholar
  35. Judd, C. M., Westfall, J., & Kenny, D. A. (2017). Experiments with more than one random factor: designs, analytic models, and statistical power. Annual Review of Psychology, 68, 601–625.CrossRefGoogle Scholar
  36. Kandrik, M., Hahn, A. C., Han, C., Wincenciak, J., Fisher, C. I., DeBruine, L. M., & Jones, B. C. (2017). Does the interaction between cortisol and testosterone predict men’s facial attractiveness? Adaptive Human Behavior and Physiology, 1–7. https://doi.org/10.1007/s40750-017-0064-1.
  37. Little, A. C. (2014). Facial attractiveness. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6), 621–634. https://doi.org/10.1002/wcs.1316.Google Scholar
  38. Little, A. C., Jones, B. C., & DeBruine, L. M. (2011). Facial attractiveness: evolutionary based research. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366(1571), 1638–1659. https://doi.org/10.1098/rstb.2010.0404.CrossRefGoogle Scholar
  39. Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces - KDEF, CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, ISBN 91-630-7164-9.Google Scholar
  40. Mazur, A. (1976). Effects of testosterone on status in primate groups. Folia Primatologica, 26(3), 214–226.CrossRefGoogle Scholar
  41. Mazur, A. (1985). A biosocial model of status in face-to-face primate groups. Social Forces, 64, 377–402.CrossRefGoogle Scholar
  42. Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21(03), 353–363.CrossRefGoogle Scholar
  43. Mehta, P. H., & Josephs, R. A. (2006). Testosterone change after losing predicts the decision to compete again. Hormones and Behavior, 50(5), 684–692. https://doi.org/10.1016/j.yhbeh.2006.07.001.CrossRefGoogle Scholar
  44. Mehta, P. H., van Son, V., Welker, K. M., Prasad, S., Sanfey, A. G., Smidts, A., & Roelofs, K. (2015). Exogenous testosterone in women enhances and inhibits competitive decision-making depending on victory–defeat experience and trait dominance. Psychoneuroendocrinology, 60, 224–236. https://doi.org/10.1016/j.psyneuen.2015.07.004.CrossRefGoogle Scholar
  45. Muehlenbein, M. P., Watts, D. P., & Whitten, P. L. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 64(1), 71–82. https://doi.org/10.1002/ajp.20062.CrossRefGoogle Scholar
  46. Muller, M. N., & Wrangham, R. W. (2004). Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis. Animal Behaviour, 67(1), 113–123. https://doi.org/10.1016/j.anbehav.2003.03.013.CrossRefGoogle Scholar
  47. Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 11087–11092. https://doi.org/10.1073/pnas.0805664105.CrossRefGoogle Scholar
  48. Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437–448. https://doi.org/10.3102/1076998603100443.
  49. Rahman, F., & Christian, H. C. (2007). Non-classical actions of testosterone: an update. Trends in Endocrinology and Metabolism, 18(10), 371–378. https://doi.org/10.1016/j.tem.2007.09.004.CrossRefGoogle Scholar
  50. Rowland, D. A., & Perrett, D. I. (1995). Manipulating facial appearance through shape and color. IEEE Computer Graphics and Applications, 15(5), 70–76.CrossRefGoogle Scholar
  51. Sapolsky, R. M. (1991). Testicular function, social rank and personality among wild baboons. Psychoneuroendocrinology, 16(4), 281–293.CrossRefGoogle Scholar
  52. Sell, A., Cosmides, L., Tooby, J., Sznycer, D., von Rueden, C., & Gurven, M. (2009). Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proceedings of the Royal Society of London B: Biological Sciences, 276(1656), 575–584. https://doi.org/10.1098/rspb.2008.1177.CrossRefGoogle Scholar
  53. Sellers, J. G., Mehl, M. R., & Josephs, R. A. (2007). Hormones and personality: testosterone as a marker of individual differences. Journal of Research in Personality, 41(1), 126–138. https://doi.org/10.1016/j.jrp.2006.02.004.CrossRefGoogle Scholar
  54. Stanton, S. J., & Schultheiss, O. C. (2009). The hormonal correlates of implicit power motivation. Journal of Research in Personality, 43(5), 942–949. https://doi.org/10.1016/j.jrp.2009.04.001.CrossRefGoogle Scholar
  55. Tiddeman, B. P., Burt, D. M., & Perrett, D. I. (2001). Prototyping and transforming facial texture for perception research. IEEE Computer Graphics and Applications, 21, 42–50. https://doi.org/10.1109/38.946630.CrossRefGoogle Scholar
  56. Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. (2015). Social attributions from faces: determinants, consequences, accuracy, and functional significance. Annual Review of Psychology, 66, 519–545. https://doi.org/10.1146/annurev-psych-113011-143831.CrossRefGoogle Scholar
  57. Trainor, B. C., Bird, I. M., & Marler, C. A. (2004). Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences. Hormones and Behavior, 45(2), 115–121. https://doi.org/10.1016/j.yhbeh.2003.09.006.CrossRefGoogle Scholar
  58. Turan, B., Guo, J., Boggiano, M. M., & Bedgood, D. (2014). Dominant, cold, avoidant, and lonely: basal testosterone as a biological marker for an interpersonal style. Journal of Research in Personality, 50, 84–89. https://doi.org/10.1016/j.jrp.2014.03.008.CrossRefGoogle Scholar
  59. Watkins, C. D., & Jones, B. C. (2012). Priming men with different contest outcomes modulates their dominance perceptions. Behavioral Ecology. https://doi.org/10.1093/beheco/arr221.
  60. Watkins, C. D., Fraccaro, P. J., Smith, F. G., Vukovic, J., Feinberg, D. R., DeBruine, L. M., & Jones, B. C. (2010a). Taller men are less sensitive to cues of dominance in other men. Behavioral Ecology, 21(5), 943–947. https://doi.org/10.1093/beheco/arq091.CrossRefGoogle Scholar
  61. Watkins, C. D., Jones, B. C., & DeBruine, L. M. (2010b). Individual differences in dominance perception: dominant men are less sensitive to facial cues of male dominance. Personality and Individual Differences, 49(8), 967–971.CrossRefGoogle Scholar
  62. Watkins, C. D., Debruine, L. M., Feinberg, D. R., & Jones, B. C. (2013). A sex difference in the context-sensitivity of dominance perceptions. Evolution and Human Behavior, 34(5), 366–372. https://doi.org/10.1016/j.evolhumbehav.2013.06.004.CrossRefGoogle Scholar
  63. Welling, L. L., Persola, L., Wheatley, J. R., Cárdenas, R. A., & Puts, D. A. (2013). Competition and men’s face preferences. Personality and Individual Differences, 54(3), 414–419. https://doi.org/10.1016/j.paid.2012.10.014.CrossRefGoogle Scholar
  64. Welling, L. L., Moreau, B. J., Bird, B. M., Hansen, S., & Carré, J. M. (2016). Exogenous testosterone increases men’s perceptions of their own physical dominance. Psychoneuroendocrinology, 64, 136–142. https://doi.org/10.1016/j.psyneuen.2015.11.016.CrossRefGoogle Scholar
  65. van Wingen, G. A., Zylicz, S. A., Pieters, S., Mattern, C., Verkes, R. J., Buitelaar, J. K., & Fernández, G. (2009). Testosterone increases amygdala reactivity in middle-aged women to a young adulthood level. Neuropsychopharmacology, 34(3), 539–547. https://doi.org/10.1038/npp.2008.2.CrossRefGoogle Scholar
  66. Watkins, C. D., & Jones, B. C. (2016). Competition-related factors directly influence preferences for facial cues of dominance in allies. Behavioral Ecology and Sociobiology, 70(12), 2071–2079. https://doi.org/10.1007/s00265-016-2211-2
  67. Wingfield, J. C., Hegner, R. E., Dufty Jr., A. M., & Ball, G. F. (1990). The "challenge hypothesis": theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136(6), 829–846.CrossRefGoogle Scholar
  68. Zilioli, S., & Bird, B. M. (2017). Functional significance of men’s testosterone reactivity to social stimuli. Frontiers in Neuroendocrinology. https://doi.org/10.1016/j.yfrne.2017.06.002.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Brian M. Bird
    • 1
  • Shawn N. Geniole
    • 2
    • 3
  • Anthony C. Little
    • 4
  • Benjamin J. P. Moreau
    • 5
  • Triana L. Ortiz
    • 2
  • Bernard Goldfarb
    • 6
  • Pierre L. Bonin
    • 6
  • Justin M. Carré
    • 2
  1. 1.Department of PsychologySimon Fraser UniversityBurnabyCanada
  2. 2.Department of PsychologyNipissing UniversityNorth BayCanada
  3. 3.Department of Basic Psychological Research and Research Methods, Faculty of PsychologyUniversity of ViennaViennaAustria
  4. 4.Department of PsychologyUniversity of BathBathUK
  5. 5.Northern Ontario School of MedicineThunder BayCanada
  6. 6.Northern Ontario School of MedicineSudburyCanada

Personalised recommendations