Skip to main content
Log in

The Diagnostic and Therapeutic Challenges of Culture Negative Sepsis

  • Pediatric Infectious Disease (M Mitchell and F Zhu, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

This review explores the current literature on the diagnosis and management of pediatric culture negative sepsis.

Recent Findings

We explored logistical factors associated with culture negative sepsis, potential diagnostic tools such as biomarkers, and the limited evidence for treatment of culture negative sepsis in children. In the setting of a negative blood culture, but high clinical suspicion for bacterial infections, clinicians look to biomarkers to help guide the use of antibiotics. These biomarkers, however, are not consistently helpful. In general, procalcitonin is superior to CRP for its specificity of a bacterial infection. However, evidence shows this biomarker may better serve to rule out bacterial infection. Other studies suggest procalcitonin may be used as a method to determine the length of antibiotic therapy, but these protocols have not been standardized. Few studies look at appropriate antibiotic duration for culture negative sepsis but suggest it may be adequate to treat for 5–7 days.

Summary

Overall, culture negative sepsis remains difficult to diagnose and has limited guidance for treatment. This is an important area for future research to help limit the misuse of antibiotics in the era of growing antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, et al. (2020) Surviving sepsis campaign international guidelines for management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(1):10–67. https://doi.org/10.1007/s00134-019-05878-6. This article provides expert recommendations for guidelines to in the care of children presenting with sepsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fleiss N, Coggins SA, Lewis AN, Zeigler A, Cooksey KE, Walker LA, et al. Evaluation of the neonatal sequential organ failure assessment and mortality risk in preterm infants with late-onset infection. JAMA Netw Open. 2021;4(2):e2036518. https://doi.org/10.1001/jamanetworkopen.2020.36518.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, et al. Sepsis prevalence, outcomes, and therapies (SPROUT) study investigators and pediatric acute lung injury and sepsis investigators (PALISI) network Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–57. https://doi.org/10.1164/rccm.201412-2323OC.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Phua J, Ngerng W, See K, Tay C, Kiong T, et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care. 2013;17(5):R202. https://doi.org/10.1186/cc12896.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wishaupt JO, Russcher A, Smeets LC, Versteegh FG, Hartwig NG. Clinical impact of RT-PCR for pediatric acute respiratory infections: a controlled clinical trial. Pediatrics. 2011;128(5):e1113-1120. https://doi.org/10.1542/peds.2010-2779.

    Article  PubMed  Google Scholar 

  6. Dietman DE, Fischer GW, Shoenknecht FD. Neonatal Echerichia coli septicemia-bacterial counts in blood. J Pediatr. 1974;85:128–30. https://doi.org/10.1016/s0022-3476(74)80308-2.

    Article  Google Scholar 

  7. Durbin WA, Szymczak EG, Goldmann DA. Quantitative blood cultures in childhood bacteremia. J Pediatr. 1978;92(5):778–80. https://doi.org/10.1016/s0022-3476(78)80151-6.

    Article  CAS  PubMed  Google Scholar 

  8. Kellogg JA, Manzella JP, Bankert DA. Frequency of low-level bacteremia in children from birth to fifteen years of age. J Clin Microbiol. 2000;38(6):2181–5. https://doi.org/10.1128/JCM.38.6.2181-2185.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr. 1996;128(2):190–5. https://doi.org/10.1016/s0022-3476(96)70388-8.

    Article  CAS  PubMed  Google Scholar 

  10. Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA. Frequency of low level bacteremia in infants from birth to two months of age. Pediatr Infect Dis J. 1997;16(4):381–5. https://doi.org/10.1097/00006454-199704000-00009.

    Article  CAS  PubMed  Google Scholar 

  11. Ilstrup DM, Washinton JA. The importance of volume of blood cultured in the detection of bacteremia and fungemia. Diagn Microbiol Infect Dis. 1983;1(2):107–10. https://doi.org/10.1016/0732-8893(83)90039-1.

    Article  CAS  PubMed  Google Scholar 

  12. Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–94. https://doi.org/10.1093/cid/ciy381.

    Article  PubMed  Google Scholar 

  13. Gonsalves WI, Cornish N, Moore M, Chen A, Varman M. Effects of volume and site of blood draw on blood culture results. J Clin Microbiol. 2009;47:3482–5. https://doi.org/10.1128/JCM.02107-08.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics. 2007;119:891–6. https://doi.org/10.1542/peds.2006-0440.

    Article  PubMed  Google Scholar 

  15. Schelonka RL, Chai MK, Yoder BA, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr. 1996;129(2):275–8. https://doi.org/10.1016/s0022-3476(96)70254-8.

    Article  CAS  PubMed  Google Scholar 

  16. Woodford EC, Dhudasia MB, Puopolo KM, Skerritt LA, Bhavsar M, DeLuca J, Mukhopadhyay S. Neonatal blood culture inoculant volume: feasibility and challenges. Pediatr Res. 2021;90(5):1086–92. https://doi.org/10.1038/s41390-021-01484-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kee PP, Chinnappan M, Nair A, Yeak D, Chen A, Starr M, et al. Diagnostic yield of timing blood culture collection relative to fever. Pediatr Infect Dis J. 2016;35(8):846–50. https://doi.org/10.1097/INF.0000000000001189.

    Article  PubMed  Google Scholar 

  18. Dien Bard J, McElvania TE. Diagnosis of bloodstream infections in children. J Clin Microbiol. 2016;54(6):1418–24. https://doi.org/10.1128/JCM.02919-15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Downes KJ, Fitzgerald JC, Weiss SL. Utility of procalcitonin as a biomarker for sepsis in children. J Clin Microbiol. 2020;58(7):e01851-e1919. https://doi.org/10.1128/JCM.01851-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simon L, Saint-Louis P, Amre DK, Lacroix J, Gauvin F. Procalcitonin and C-reactive protein as markers of bacterial infection in critically ill children at onset of systemic inflammatory response syndrome. Pediatr Crit Care Med. 2008;9:407–13. https://doi.org/10.1097/PCC.0b013e31817285a6.

    Article  PubMed  Google Scholar 

  21. Lacour AG, Gervaix A, Zamora SA, Vadas L, Lombard PR, Dayer JM, Suter S. Procalcitonin, IL-6, IL-8, IL-1 receptor antagonist and C-reactive protein as identificators of serious bacterial infections in children with fever without localising signs. Eur J Pediatr. 2001;160(2):95–100. https://doi.org/10.1007/s004310000681.

    Article  CAS  PubMed  Google Scholar 

  22. Andreola B, Bressan S, Callegaro S, Liverani A, Plebani M, Da Dalt L. Procalcitonin and C-reactive protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency department. Pediatr Infect Dis J. 2007;26(8):672–7. https://doi.org/10.1097/INF.0b013e31806215e3.

    Article  PubMed  Google Scholar 

  23. Fernández Lopez A, LuacesCubells C, GarcíaGarcía JJ, FernándezPou J. Spanish Society of Pediatric Emergencies. Procalcitonin in pediatric emergency departments for the early diagnosis of invasive bacterial infections in febrile infants: results of a multicenter study and utility of a rapid qualitative test for this marker. Pediatr Infect Dis J. 2003;22(10):895–903. https://doi.org/10.1097/01.inf.0000091360.11784.21.

    Article  PubMed  Google Scholar 

  24. Hatherill M, Tibby SM, Sykes K, Turner C, Murdoch IA. Diagnostic markers of infection: comparison of procalcitonin with C reactive protein and leucocyte count. Arch Dis Child. 1999;81(5):417–21. https://doi.org/10.1136/adc.81.5.417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galetto-Lacour A, Zamora SA, Gervaix A. Bedside procalcitonin and C-reactive protein tests in children with fever without localizing signs of infection seen in a referral center. Pediatrics. 2003;112(5):1054–60. https://doi.org/10.1542/peds.112.5.1054.

    Article  PubMed  Google Scholar 

  26. Maniaci V, Dauber A, Weiss S, Nylen E, Becker KL, Bachur R. Procalcitonin in young febrile infants for the detection of serious bacterial infections. Pediatrics. 2008;122(4):701–10. https://doi.org/10.1542/peds.2007-3503.

    Article  PubMed  Google Scholar 

  27. Gomez B, Bressan S, Mintegi S, Da Dalt L, Blazquez D, Olaciregui I, et al. Diagnostic value of procalcitonin in well-appearing young febrile infants. Pediatrics. 2012;130(5):815–22. https://doi.org/10.1542/peds.2011-3575.

    Article  PubMed  Google Scholar 

  28. Milcent K, Faesch S, Gras-Le Guen C, Dubos F, Poulalhon C, Badier I, et al. Use of procalcitonin assays to predict serious bacterial infection in young febrile infants. JAMA Pediatr. 2016;170:62–9. https://doi.org/10.1001/jamapediatrics.2015.3210.

    Article  PubMed  Google Scholar 

  29. Kuppermann N, Dayan PS, Levine DA, Vitale M, Tzimenatos L, Tunik MG, et al. Febrile infant working group of the Pediatric Emergency Care Applied Research Network (PECARN). A clinical prediction rule to identify febrile infants 60 days and younger at low risk for serious bacterial infections. JAMA Pediatr. 2019;173(4):342–51. https://doi.org/10.1001/jamapediatrics.2018.5501.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chaurasia S, Anand P, Sharma A, Nangia S, Sivam A, Jain K, et al. Procalcitonin for detecting culture-positive sepsis in neonates: a prospective, multicenter study. Neonatology. 2023;120(5):642–51. https://doi.org/10.1159/000529640.

    Article  CAS  PubMed  Google Scholar 

  31. Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, et al. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr Infect Dis J. 1999;18(10):875–81. https://doi.org/10.1097/00006454-199910000-00008.

    Article  CAS  PubMed  Google Scholar 

  32. Lautz AJ, Dziorny AC, Denson AR, O’Connor KA, Chilutti MR, Ross RK, et al. Value of procalcitonin measurement for early evidence of severe bacterial infections in the pediatric intensive care unit. J Pediatr. 2006;179:74-81.e2. https://doi.org/10.1016/j.jpeds.2016.07.045.

    Article  CAS  Google Scholar 

  33. Han YY, Doughty LA, Kofos D, Sasser H, Carcillo JA. Procalcitonin is persistently increased among children with poor outcome from bacterial sepsis. Pediatr Crit Care Med. 2003;4:21–5. https://doi.org/10.1097/00130478-200301000-00004.

    Article  PubMed  Google Scholar 

  34. Jensen JU, Hein L, Lundgren B, Bestle MH, Mohr TT, Andersen MH, et al. Procalcitonin And Survival Study (PASS) Group. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39(9):2048–58. https://doi.org/10.1097/CCM.0b013e31821e8791.

    Article  CAS  PubMed  Google Scholar 

  35. Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America; Society for Healthcare Epidemiology of America. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159–77. https://doi.org/10.1086/510393.

    Article  PubMed  Google Scholar 

  36. Campion M, Scully G. Antibiotic use in the intensive care unit: optimization and de-escalation. J Intensive Care Med. 2018;33(12):647–55. https://doi.org/10.1177/0885066618762747.

    Article  PubMed  Google Scholar 

  37. Di Pentima MC, Chan S, Hossain J. Benefits of a pediatric antimicrobial stewardship program at a children’s hospital. Pediatrics. 2011;128(6):1062–70. https://doi.org/10.1542/peds.2010-3589.

    Article  PubMed  Google Scholar 

  38. Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237–45. https://doi.org/10.1093/cid/cit498.

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Liu M, Yang K, Zhao Y, Tian J, Pernica JM, Guyatt G. Shorter versus longer-term antibiotic treatments for community- acquired pneumonia in children: a meta-analysis. Pediatrics. 2023;151(6):e2022060097. https://doi.org/10.1542/peds.2022-060097.

    Article  PubMed  Google Scholar 

  40. Brady PW, Conway PH, Goudie A. Length of intravenous antibiotic therapy and treatment failure in infants with urinary tract infections. Pediatrics. 2010;126(2):196–203. https://doi.org/10.1542/peds.2009-2948.

    Article  PubMed  Google Scholar 

  41. Tamma PD, Turnbull AE, Milstone AM, Lehmann CU, Sydnor ER, Cosgrove SE. Ventilator-associated tracheitis in children: does antibiotic duration matter? Clinical Infectious Disease. 2011;52(11):1324–2133. https://doi.org/10.1093/cid/cir203.

    Article  Google Scholar 

  42. • Singh N, Gray JE. Antibiotic stewardship in NICU: De-implementing routine CRP to reduce antibiotic usage in neonates at risk for early-onset sepsis. J Perinatol. 2021;41(10):2488–94. https://doi.org/10.1038/s41372-021-01110-w. This is a retrospective before-after cohort study demonstrating a reduction in antibiotics in the NICU with the removal of routine CRP collection. With this reduction in antibiotics used for early onset sepsis, they did not find an increase in partially treated cases. Patients with high suspicion of sepsis were still treated, but there was a reduction in antibiotics used days 3-6 when suspicion was low.

    Article  CAS  PubMed  Google Scholar 

  43. Astorga MC, Piscitello KJ, Menda N, Ebert AM, Ebert SC, Porte MA, Kling PJ. Antibiotic stewardship in the neonatal intensive care unit: effects of an automatic 48-hour antibiotic stop order on antibiotic use. J Pediatric Infect Dis Soc. 2019;8(4):310–6. https://doi.org/10.1093/jpids/piy043.

    Article  PubMed  Google Scholar 

  44. Downes KJ, Weiss SL, Gerber JS, Klieger SB, Fitzgerald JC, Balamuth F, et al. A pragmatic biomarker-driven algorithm to guide antibiotic use in the pediatric intensive care unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) Study. J Pediatr Infect Dis Soc. 2017;6:134–41. https://doi.org/10.1093/jpids/piw023.

    Article  Google Scholar 

  45. •• Morowitz MJ, Katheria AC, Polin RA, Pace E, Huang DT, Chang CH, Yabes JG. The NICU Antibiotics and Outcomes (NANO) trial: a randomized multicenter clinical trial assessing empiric antibiotics and clinical outcomes in newborn preterm infants. Trials. 2022;23(1):428. https://doi.org/10.1186/s13063-022-06352-3. This is a multicenter, randomized control trial assessing early antibiotic exposure side effects/outcomes in extremely low birth weight infants. The goal is to determine if the current practice of early antibiotics outweighs the risks of antibiotic exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuppala VS, Meinzen-Derr J, Morrow AL, Schibler KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr. 2011;159:720–5. https://doi.org/10.1016/j.jpeds.2011.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alexander VN, Northrup V, Bizzarro MJ. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159:392–7. https://doi.org/10.1016/j.jpeds.2011.02.035.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Downes KJ, Fitzgerald JC, Schriver E, Boge CLK, Russo ME, Weiss SL, et al. Implementation of a pragmatic biomarker-driven algorithm to guide antibiotic use in the pediatric intensive care unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) II Study. J Pediatr Infect Dis Soc. 2020;9:36–43. https://doi.org/10.1093/jpids/piy113. This study suggests that the use of biomarkers, procalcitonin and CRP may be supportive when low in decisions to stop antibiotics in PICU patients with SIRS but no source of infection. However, the authors biomarker-based algorithm did not decrease overall antibiotic prescribing in patients with SIRS.

    Article  CAS  Google Scholar 

  49. Stocker M, van Herk W, el Helou S, Dutta S, Fontana MS, Schuerman FABA, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns.). Lancet. 2017;390:871–81. https://doi.org/10.1016/S0140-6736(17)31444-7.

    Article  CAS  PubMed  Google Scholar 

  50. Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74. https://doi.org/10.1016/S0140-6736(09)61879-1.

    Article  CAS  PubMed  Google Scholar 

  51. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177:498–505. https://doi.org/10.1164/rccm.200708-1238OC.

    Article  CAS  PubMed  Google Scholar 

  52. Cantey JB, Wozniak PS, Pruszynski JE, Sanchez PJ. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): a prospective interrupted time-series study. Lancet Infect Dis. 2016;16(10):1178–84. https://doi.org/10.1016/S1473-3099(16)30205-5.

    Article  PubMed  Google Scholar 

  53. Wehrenberg K, Mitchell M, Zembles T, Yan K, Zhang L, Thompson N. Antibiotic treatment duration for culture-negative sepsis in the pediatric intensive care unit. Antimicrob Steward Healthc Epidemiol. 2023;3(1):e249. https://doi.org/10.1017/ash.2023.502.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.W. wrote the main manuscript text. M.M. and N.T. revised the work critically. All authors reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Kelsey Wehrenberg.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrenberg, K., Mitchell, M. & Thompson, N. The Diagnostic and Therapeutic Challenges of Culture Negative Sepsis. Curr Treat Options Peds (2024). https://doi.org/10.1007/s40746-024-00293-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40746-024-00293-6

Keywords

Navigation