Skip to main content

Advertisement

Log in

Respiratory Disorders in Neonates Born by Elective Cesarean Section

  • Pediatric Neonatology (T Thorkelsson, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

Infants born by elective cesarean section (ECS) are at increased risk for respiratory dysfunction due to inadequate lung fluid clearance, surfactant deficiency, and increased pulmonary vascular resistance. The purpose of this article is to give insight into the etiology and pathophysiology of lung diseases in neonates born by ECS, as well as current recommendations for their management.

Recent Findings

The diagnosis and management of respiratory disorders in neonates has improved in recent years with better diagnostic methods and treatment options. Antenatal corticosteroids (ACS) have been shown to decrease respiratory morbidity associated with ECS in near-term and term infants, but a recent systematic review of 30 studies showed a significantly higher risk for adverse neurocognitive and psychological outcomes in children with ACS exposure during late-preterm and full-term birth than non-exposed children.

Summary

This review focuses mainly on current treatment options for respiratory diseases in neonates born by ECS, and a brief review of pulmonary fetal development and postnatal adaption is also included. ACSs have been used to reduce respiratory morbidity associated with ECS but are associated with increased risk of adverse neurocognitive and psychological outcomes in children born term or near-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Thorkelsson T, Sigfusson G. Neonatal lung diseases. In: Wheeler DSWH, Shanley TP, editors. Pediatric Critical Care Medicine Volume 2: Respiratory, cardiovascular and central nervous systems. London: Springer; 2014. p. 249–62.

    Chapter  Google Scholar 

  2. Pramanik AK, Rangaswamy N, Gates T. Neonatal respiratory distress: a practical approach to its diagnosis and management. Pediatr Clin North Am. 2015;62(2):453–69. https://doi.org/10.1016/j.pcl.2014.11.008.

    Article  PubMed  Google Scholar 

  3. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child - Fetal and Neonatal Ed. 2016;101(3):F266–71. https://doi.org/10.1136/archdischild-2013-305704.

    Article  Google Scholar 

  4. Morrison JJ, Rennie JM, Milton PJ. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995;102(2):101–6. https://doi.org/10.1111/j.1471-0528.1995.tb09060.x.

    Article  CAS  PubMed  Google Scholar 

  5. Tita AT, Landon MB, Spong CY, Lai Y, Leveno KJ, Varner MW, et al. Timing of elective repeat cesarean delivery at term and neonatal outcomes. N Engl J Med. 2009;360(2):111–20. https://doi.org/10.1056/NEJMoa0803267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansen AK, Wisborg K, Uldbjerg N, Henriksen TB. Risk of respiratory morbidity in term infants delivered by elective caesarean section: cohort study. BMJ. 2008;336(7635):85–7. https://doi.org/10.1136/bmj.39405.539282.BE.

    Article  PubMed  Google Scholar 

  7. Schittny JC. Development of the lung. Cell Tissue Res. 2017;367(3):427–44. https://doi.org/10.1007/s00441-016-2545-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bolt RJ, van Weissenbruch MM, Lafeber HN, Delemarre-van de Waal HA. Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol. 2001;32(1):76–91. https://doi.org/10.1002/ppul.1092.

    Article  CAS  PubMed  Google Scholar 

  9. Sadler TW. Chapter 14 - Respiratory system. In: Langman’s medical embryology. Philadelphia: Wolters Kluwer Health; 2015. p. 218–222.

  10. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, et al. Chapter Three - Lung Organogenesis. In: Koopman P, editor., et al., Current topics in developmental biology. Academic Press; 2010. p. 73–158.

    Google Scholar 

  11. Lakshminrusimha S. The pulmonary circulation in neonatal respiratory failure. Clin Perinatol. 2012;39(3):655–83. https://doi.org/10.1016/j.clp.2012.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aziz K, Lee HC, Escobedo MB, Hoover AV, Kamath-Rayne BD, Kapadia VS, et al. Part 5: neonatal resuscitation: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S524–50. https://doi.org/10.1161/CIR.0000000000000902.

    Article  PubMed  Google Scholar 

  13. Hooper SB, Harding R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol. 1995;22(4):235–47. https://doi.org/10.1111/j.1440-1681.1995.tb01988.x.

    Article  CAS  PubMed  Google Scholar 

  14. Guglani L, Lakshminrusimha S, Ryan RM. Transient tachypnea of the newborn. Pediatr Rev. 2008;29(11):e59–65. https://doi.org/10.1542/pir.29-11-e59.

    Article  PubMed  Google Scholar 

  15. Gluckman PD, Heymann MA. Chapter 11 – Respiratory System. In: Perinatal and Pediatric Pathophysiology: A Clinical Perspective. Hodder Education publishers; 1993. p. 563–594.

  16. te Pas AB, Davis PG, Hooper SB, Morley CJ. From liquid to air: breathing after birth. J Pediatr. 2008;152(5):607–11. https://doi.org/10.1016/j.jpeds.2007.10.041.

    Article  Google Scholar 

  17. Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006;30(1):34–43. https://doi.org/10.1053/j.semperi.2006.01.006.

    Article  PubMed  Google Scholar 

  18. Ballard PL, Ballard RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol. 1995;173(1):254–62. https://doi.org/10.1016/0002-9378(95)90210-4.

    Article  CAS  PubMed  Google Scholar 

  19. Faxelius G, Hägnevik K, Lagercrantz H, Lundell B, Irestedt L. Catecholamine surge and lung function after delivery. Arch Dis Child. 1983;58(4):262–6. https://doi.org/10.1136/adc.58.4.262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veldhuizen EJA, Haagsman HP. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta (BBA) - Biomembr. 2000;1467(2):255–70. https://doi.org/10.1016/s0005-2736(00)00256-x.

    Article  CAS  Google Scholar 

  21. Young SL, Fram EK, Larson EW. Three-dimensional reconstruction of tubular myelin. Exp Lung Res. 1992;18(4):497–504. https://doi.org/10.3109/01902149209064342.

    Article  CAS  PubMed  Google Scholar 

  22. Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012;39(4):769–83. https://doi.org/10.1016/j.clp.2012.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hallman M, Kulovich M, Kirkpatrick E, Sugarman RG, Gluck L. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. Am J Obstet Gynecol. 1976;125(5):613–7. https://doi.org/10.1016/0002-9378(76)90782-1.

    Article  CAS  PubMed  Google Scholar 

  24. Han S, Mallampalli RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc. 2015;12(5):765–74. https://doi.org/10.1513/AnnalsATS.201411-507FR.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yadav S, Lee B, Kamity R. Neonatal Respiratory Distress Syndrome. [Updated 2022 Jul25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560779/

  26. Vali P, Lakshminrusimha S. The Fetus Can Teach Us: Oxygen and the Pulmonary Vasculature. Children (Basel). 2017;4(8):67. https://doi.org/10.3390/children4080067.

  27. Lai MY, Chu SM, Lakshminrusimha S, Lin HC. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Pediatr Neonatol. 2018;59(1):15–23. https://doi.org/10.1016/j.pedneo.2016.09.011.

    Article  PubMed  Google Scholar 

  28. Spitzer AR, Davis J, Clarke WT, Bernhaum J, Fox WW. Pulmonary hypertension and persistent fetal circulation in the newborn. Clin Perinatol. 1988;15(2):389–413. https://doi.org/10.1016/S0095-5108(18)30718-8.

    Article  CAS  PubMed  Google Scholar 

  29. Vigdis Rikhardsdottir J, Hardardottir H, Thorkelsson T. The majority of early term elective cesarean sections can be postponed. J Matern Fetal Neonatal Med. 2021;34(20):3344–9. https://doi.org/10.1080/14767058.2019.1684467.

  30. Birgisdottir BT, Hardardottir H, Bjarnadottir RI, Thorkelsson T. Vaginal birth after one previous cesarean section. Laeknabladid. 2008;94(9):591–7.

    PubMed  Google Scholar 

  31. Dónaldsson SF, Dagbjartsson A, Bergsteinsson H, Hardardóttir H, Haraldsson A, Thórkelsson T. Respiratory dysfunction in infants born by elective cesarean section without labor. Laeknabladid. 2007;93(10):675–9.

    PubMed  Google Scholar 

  32. National Institute for Health and Clinical Excellence. Caesarean birth. United Kingdom: National Institute for Health and Clinical Excellence; 2021 [cited 2023 Jan 8]. Available from https://www.nice.org.uk/guidance/ng192.

  33. The American College of Obstetricians and Gynecologists. ACOG committee opinion no. 761: Cesarean Delivery on Maternal Request. Obstet Gynecol. 2019;133(1):e73–e77. https://doi.org/10.1097/AOG.0000000000003006

  34. Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14(1):29–36. https://doi.org/10.1016/j.prrv.2012.02.002.

    Article  PubMed  Google Scholar 

  35. Tutdibi E, Gries K, Bucheler M, Misselwitz B, Schlosser RL, Gortner L. Impact of labor on outcomes in transient tachypnea of the newborn: population-based study. Pediatrics. 2010;125(3):e577–83. https://doi.org/10.1542/peds.2009-0314.

    Article  PubMed  Google Scholar 

  36. Dehdashtian M, Aletayeb M, Malakian A, Aramesh MR, Malvandi H. Clinical course in infants diagnosed with transient tachypnea of newborn: a clinical trial assessing the role of conservative versus conventional management. J Chin Med Assoc. 2018;81(2):183–6. https://doi.org/10.1016/j.jcma.2017.06.016.

    Article  CAS  PubMed  Google Scholar 

  37. Agrawal RNN, Vadera S, et al. Transient tachypnoea of the newborn. Radiopaedia. 2008. https://doi.org/10.53347/rID-2198.

    Article  Google Scholar 

  38. Gizzi C, Klifa R, Pattumelli MG, Massenzi L, Taveira M, Shankar-Aguilera S, et al. Continuous positive airway pressure and the burden of care for transient tachypnea of the neonate: retrospective cohort study. Am J Perinatol. 2015;32(10):939–43. https://doi.org/10.1055/s-0034-1543988.

    Article  PubMed  Google Scholar 

  39. Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. J Matern Fetal Neonatal Med. 2019;32(4):597–603. https://doi.org/10.1080/14767058.2017.1387531.

    Article  PubMed  Google Scholar 

  40. Chiruvolu A, Claunch KM, Garcia AJ, Petrey B, Hammonds K, Mallett LH. Effect of continuous positive airway pressure versus nasal cannula on late preterm and term infants with transient tachypnea of the newborn. J Perinatol. 2021;41(7):1675–80. https://doi.org/10.1038/s41372-021-01068-9.

    Article  CAS  PubMed  Google Scholar 

  41. Shah BA, Fabres JG, Leone TA, Schmölzer GM, Szyld EG. Continuous positive airway pressure for term and ≥34+0 weeks’ gestation newborns at birth: a systematic review. Resuscitation Plus. 2022;12:100320. https://doi.org/10.1016/j.resplu.2022.100320.

  42. Claassen CC, Strand ML. Understanding the Risks and Benefits of Delivery Room CPAP for Term Infants. Pediatrics. 2019;144(3):e20191720. https://doi.org/10.1542/peds.2019-1720.

  43. Stocks EF, Jaleel M, Smithhart W, Burchfield PJ, Thomas A, Mangona KLM, et al. Decreasing delivery room CPAP-associated pneumothorax at ≥35-week gestational age. J Perinatol. 2022;42(6):761–8. https://doi.org/10.1038/s41372-022-01334-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smithhart W, Wyckoff MH, Kapadia V, et al. Delivery Room Continuous Positive Airway Pressure and Pneumothorax. Pediatrics. 2019;144(3):e20190756. https://doi.org/10.1542/peds.2019-0756.

  45. Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4):419–25. https://doi.org/10.1001/jama.2010.1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rubarth LB, Quinn J. Respiratory development and respiratory distress syndrome. Neonatal Netw. 2015;34(4):231–8. https://doi.org/10.1891/0730-0832.34.4.231.

    Article  PubMed  Google Scholar 

  47. Lodha A, Bhandari V. Use of lung ultrasound to improve timeliness of surfactant replacement in respiratory distress syndrome: are we ready? J Pediatr. 2019;212:8–10. https://doi.org/10.1016/j.jpeds.2019.05.057.

    Article  PubMed  Google Scholar 

  48. Verder H, Heiring C, Clark H, Sweet D, Jessen TE, Ebbesen F, et al. Rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted respiratory distress syndrome with high sensitivity. Acta Paediatr. 2017;106(3):430–7. https://doi.org/10.1111/apa.13683.

    Article  CAS  PubMed  Google Scholar 

  49. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology. 2019;115(4):432–50. https://doi.org/10.1159/000499361.

    Article  PubMed  Google Scholar 

  50. Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health. 2021;26(1):35–49. https://doi.org/10.1093/pch/pxaa116.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin North Am. 2009;56(3):579–600. https://doi.org/10.1016/j.pcl.2009.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015;132(21):2037–99. https://doi.org/10.1161/CIR.0000000000000329.

    Article  PubMed  Google Scholar 

  53. Mandell E, Kinsella JP, Abman SH. Persistent pulmonary hypertension of the newborn. Pediatr Pulmonol. 2021;56(3):661–9. https://doi.org/10.1002/ppul.25073.

    Article  PubMed  Google Scholar 

  54. Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107(3):161–6. https://doi.org/10.1159/000369774.

    Article  CAS  PubMed  Google Scholar 

  55. Kinsella JP, Abman SH. Inhaled nitric oxide therapy in children. Paediatr Respir Rev. 2005;6(3):190–8. https://doi.org/10.1016/j.prrv.2005.06.002.

    Article  PubMed  Google Scholar 

  56. Lazar DA, Cass DL, Olutoye OO, Welty SE, Fernandes CJ, Rycus PT, et al. The use of ECMO for persistent pulmonary hypertension of the newborn: a decade of experience. J Surg Res. 2012;177(2):263–7. https://doi.org/10.1016/j.jss.2012.07.058.

    Article  CAS  PubMed  Google Scholar 

  57. Keszler M, Carbone MT, Cox C, Schumacher RE. Severe respiratory failure after elective repeat cesarean delivery: a potentially preventable condition leading to extracorporeal membrane oxygenation. Pediatrics. 1992;89(4 Pt 1):670–2.

    Article  CAS  PubMed  Google Scholar 

  58. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  59. World Health Organization. WHO recommendations on antenatal corticosteroids for improving preterm birth outcomes.Geneva: World Health Organization; 2022. Available from: https://www.who.int/publications/i/item/9789240057296.

  60. Bonanno C, Wapner RJ. Antenatal corticosteroid treatment: what’s happened since Drs Liggins and Howie? Am J Obstet Gynecol. 2009;200(4):448–57. https://doi.org/10.1016/j.ajog.2008.12.011.

    Article  CAS  PubMed  Google Scholar 

  61. Habermehl D, Parkitna JR, Kaden S, Brugger B, Wieland F, Grone HJ, et al. Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol. 2011;25(8):1280–8. https://doi.org/10.1210/me.2009-0380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eisler G, Hjertberg R, Lagercrantz H. Randomised controlled trial of effect of terbutaline before elective caesarean section on postnatal respiration and glucose homeostasis. Arch Dis Child Fetal Neonatal Ed. 1999;80(2):F88-92. https://doi.org/10.1136/fn.80.2.f88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pedersen P, Avlund OL, Pedersen BL, Pryds O. Intramuscular adrenaline does not reduce the incidence of respiratory distress and hypoglycaemia in neonates delivered by elective caesarean section at term. Arch Dis Child Fetal Neonatal Ed. 2009;94(3):F164–7. https://doi.org/10.1136/adc.2008.138487.

    Article  CAS  PubMed  Google Scholar 

  64. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12(12):Cd004454. https://doi.org/10.1002/14651858.CD004454.pub4.

    Article  PubMed  Google Scholar 

  65. The American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice. ACOG committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet Gynecol. 2017;130(2):e102–e109.https://doi.org/10.1097/AOG.0000000000002237.

  66. The American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 171: Management of Preterm Labor. Obstet Gynecol. 2016;128(4):e155–64. doi:10.1097/AOG.0000000000001711.

  67. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454. https://doi.org/10.1002/14651858.CD004454.pub3.

    Article  PubMed  Google Scholar 

  68. Stock S, Thomson A, Papworth S, Obstetricians tRCo, Gynaecologists. Antenatal corticosteroids to reduce neonatal morbidity and mortality. BJOG: Int J Obstet Gynaecol. 2022;129(8):35–60. https://doi.org/10.1111/1471-0528.17027.

    Article  Google Scholar 

  69. National Institute for Health and Clinical Excellence. Preterm labour and birth. United Kingdom: National Institute for Health and Clinical Excellence; 2015 [updated 2022 June.; cited 2023 Jan 8]. Available from: https://www.nice.org.uk/guidance/ng25.

  70. Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016;374(14):1311–20. https://doi.org/10.1056/NEJMoa1516783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stutchfield P, Whitaker R, Russell I, Antenatal Steroids for Term Elective Caesarean Section Research T. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005;331(7518):662. https://doi.org/10.1136/bmj.38547.416493.06.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sotiriadis A, Tsiami A, Papatheodorou S, Baschat AA, Sarafidis K, Makrydimas G. Neurodevelopmental outcome after a single course of antenatal steroids in children born preterm: a systematic review and meta-analysis. Obstet Gynecol. 2015;125(6):1385–96. https://doi.org/10.1097/AOG.0000000000000748.

    Article  CAS  PubMed  Google Scholar 

  73. Carlo WA, McDonald SA, Fanaroff AA, Vohr BR, Stoll BJ, Ehrenkranz RA, et al. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks’ gestation. JAMA. 2011;306(21):2348–58. https://doi.org/10.1001/jama.2011.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Evaluation of long-term outcomes associated with preterm exposure to antenatal corticosteroids: a systematic review and meta-analysis. JAMA Pediatr. 2022;176(6):220483. https://doi.org/10.1001/jamapediatrics.2022.0483. This study shows that antenatal corticosteroid (ACS) exposure is associated with increased risk of adverse neurocognitive and/or psychological outcomes in children born late-preterm and full-term. These results suggest that caution is needed in administering ACS at near-term and term gestation.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Lars Björklund for reviewing their manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorri Donaldsson MDPhD.

Ethics declarations

Conflicts of Interest

Katrin H. Demian declares that she has no conflict of interest. Thordur Thorkelsson declares that he has no conflict of interest. Gunnlaugur Sigfusson declares that he has no conflict of interest. Snorri Donaldsson declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Neonatology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demian, K.H., Thorkelsson, T., Sigfusson, G. et al. Respiratory Disorders in Neonates Born by Elective Cesarean Section. Curr Treat Options Peds 9, 45–58 (2023). https://doi.org/10.1007/s40746-023-00266-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-023-00266-1

Keywords

Navigation