Skip to main content

Advertisement

Log in

Methicillin-Resistant Staphylococcus aureus (MRSA): Review of Current Treatment Options in Pediatrics

  • Pediatric Infectious Disease (M Mitchell and F Zhu, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

Methicillin-resistant Staphylococcus aureus (MRSA) infections have significant morbidity and mortality in pediatrics. Although, MRSA frequently causes skin and soft tissue infections (SSTI), invasive infections due to MRSA have become increasingly common. This review aims to provide clinicians with the current treatment options available for invasive and non-invasive MRSA infections in pediatrics.

Recent Findings

MRSA resistance is increasing and antibiotics, such as clindamycin and TMP-SMX, may not be as effective. Ceftaroline is a newer agent that has been approved in the USA and Canada for the management of acute bacterial SSTI and community acquired pneumonias caused by MRSA.

Summary

Vancomycin remains the mainstay of therapy for most invasive MRSA infections. However, the choice of antibiotic used in the clinical setting can depend on many factors: resistance patterns, site of infection, age and geographical location of the patient, side effects and availability of antibiotics. In pediatrics, future clinical studies are required to determine the efficacy and safety of novel antibiotics such as ceftaroline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vanderkoo OG, Gregson DB, Kellner JD, Laupland KB. Staphylococcus aureus bloodstream infections in children: a population-based assessment. Paediatr Child Health. 2011;16(5):276–80.

    Article  Google Scholar 

  2. Suryati B, Watson M. Staphylococcus aureus bacteraemia in children: a 5-year retrospective review. J Paediatr Child Health. 2002;38(3):290–4.

    Article  CAS  PubMed  Google Scholar 

  3. •• McMullan BJ, Campbell AJ, Blyth CC, McNeil JC, Montgomery CP, Tong SYC, et al. Clinical management of Staphylococcus aureus bacteremia in neonates, children, and adolescents. Pediatrics. 2020;146(3):e20200134. Findings showed the different presentations and risk factors for MRSA bacteremia. It was discussed that in pediatrics, a large cohort of patients with SA bacteremia are healthy children with no medical problems which is different from adults.

    Article  PubMed  Google Scholar 

  4. •• Kaplan SL. Methicillin-resistant Staphylococcus aureus infections in children: epidemiology and clinical spectrum [Internet]. 2021. Available from: https://www.uptodate.com/contents/methicillin-resistant-staphylococcus-aureus-infections-in-children-epidemiology-and-clinical-spectrum/print?topicRef=6025&so…1/26OfficialreprintfromUpToDatewww.uptodate.com. Accessed 21 Nov 2021. This paper discussed the updated geographical differences along with recent incidence and prevalence of MRSA. Furthermore, updated definitions for hospital and community onset were established. Key points regarding pathogenesis and clinical spectrum of MRSA were reported. Since rates of resistance are increasing and MRSA is no longer only a nosocomial infection, it is Important for clinicians in the community to be aware of the alternative risk factors and high risk populations.

  5. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus : epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siddiqui AH, Koirala J. Methicillin resistant Staphylococcus aureus. 2022. Available from: https://pubmed.ncbi.nlm.nih.gov/29489200/.

  7. Kreiswirth B, Kornblum J, Arbeit RD, Eisner W, Maslow JN, McGeer A, et al. (1993) Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science. 1979;259(5092):227–30.

    Article  Google Scholar 

  8. Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, et al. Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med. 2016;6(12):a026989.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3). Available from: https://pubmed.ncbi.nlm.nih.gov/21217178/.

  10. Drew RH, Sakoulas G. Vancomycin: parenteral dosing, monitoring, and adverse effects in adults [Internet]. 2022. Available from: https://www.uptodate.com/contents/vancomycin-parenteral-dosing-monitoring-and-adverse-effects-in-adults/print?search=vancomycindosing&source=search_result…1/37OfficialreprintfromUpToDatewww.uptodate.com. Accessed 27 Jan 2022.

  11. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–64.

    Article  PubMed  Google Scholar 

  12. Finch NA, Zasowski EJ, Murray KP, Mynatt RP, Zhao JJ, Yost R, et al. A quasi-experiment to study the impact of vancomycin area under the concentration-time curve-guided dosing on vancomycin-associated nephrotoxicity.Antimicrob Agents Chemother. 2017;61(12). Available from: https://pubmed.ncbi.nlm.nih.gov/28923869/.

  13. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2). Available from: https://pubmed.ncbi.nlm.nih.gov/29203493/.

  14. Martel TJ, Jamil RT, King KC. Vancomycin flushing syndrome. 2022. Available from: https://pubmed.ncbi.nlm.nih.gov/29494112/.

  15. Thomsen IP. The concern for vancomycin failure in the treatment of pediatric Staphylococcus aureus disease. Clin Infect Dis. 2019;68(3):373–4.

    Article  PubMed  Google Scholar 

  16. Healthcare-associated infections and antimicrobial resistance in Canadian acute care hospitals, 2016–2020. Can Commun Dis Rep. 2022;48(7/8). https://doi.org/10.14745/ccdr.v48i78a03.

  17. Douros A, Grabowski K, Stahlmann R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol. 2015;11(12):1849–59.

    Article  CAS  PubMed  Google Scholar 

  18. Watkins RR, Lemonovich TL, File TM. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): place in therapy. Core Evid. 2012;7:131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drew RH, Peel T. Linezolid and tedizolid (oxazolidinones): an overview [Internet]. 2022. Available from: https://www.uptodate.com/contents/linezolid-and-tedizolid-oxazolidinones-an-overview/print?search=linezolid&source=search_result&selectedTitle=2~148&usage…1/26OfficialreprintfromUpToDatewww.uptodate.com. Accessed 10 Jan 2022.

  20. Tsona A, Metallidis S, Foroglou N, Selviaridis P, Chrysanthidis T, Lazaraki G, et al. Linezolid penetration into cerebrospinal fluid and brain tissue. J Chemother. 2010;22(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sipahi OR, Bardak-Ozcem S, Turhan T, Arda B, Ruksen M, Pullukcu H, et al. Vancomycin versus linezolid in the treatment of methicillin-resistant Staphylococcus aureus meningitis. Surg Infect (Larchmt). 2013;14(4):357–62.

    Article  PubMed  Google Scholar 

  22. Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66(Supplement 4):iv7-15.

    Article  CAS  PubMed  Google Scholar 

  23. Hirano M, Palenzuela L, Hahn NM, Nelson RP, Arno JN, Schobert C, et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis. 2005;40(12):e113–6.

    Article  PubMed  Google Scholar 

  24. Moellering RC. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med. 2003;138(2):135.

    Article  CAS  PubMed  Google Scholar 

  25. Kim A, Suecof LA, Sutherland CA, Gao L, Kuti JL, Nicolau DP. In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother. 2008;52(11):3941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seaton RA, Malizos KN, Viale P, Gargalianos-Kakolyris P, Santantonio T, Petrelli E, et al. Daptomycin use in patients with osteomyelitis: a preliminary report from the EU-CORESM database. J Antimicrob Chemother. 2013;68(7):1642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lamp KC, Friedrich LV, Mendez-Vigo L, Russo R. Clinical experience with daptomycin for the treatment of patients with osteomyelitis. Am J Med. 2007;120(10):S13-20.

    Article  CAS  PubMed  Google Scholar 

  28. Moenster RP, Linneman TW, Finnegan PM, McDonald JR. Daptomycin compared to vancomycin for the treatment of osteomyelitis: a single-center, retrospective cohort study. Clin Ther. 2012;34(7):1521–7.

    Article  CAS  PubMed  Google Scholar 

  29. Murray KP, Zhao JJ, Davis SL, Kullar R, Kaye KS, Lephart P, et al. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: a matched cohort study. Clin Infect Dis. 2013;56(11):1562–9.

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Rahman SM, Chandorkar G, Akins RL, Bradley JS, Jacobs RF, Donovan J, et al. Single-dose pharmacokinetics and tolerability of daptomycin 8 to 10 mg/kg in children aged 2 to 6 years with suspected or proved Gram-positive infections. Pediatr Infect Dis J. 2011;30(8):712–4.

    Article  PubMed  Google Scholar 

  31. https://clinicalinfo.hiv.gov/en/drugs/sulfamethoxazole-trimethoprim/patient. Accessed 20 Jan 2022.

  32. Paul M, Bishara J, Yahav D, Goldberg E, Neuberger A, Ghanem-Zoubi N, et al. Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: randomised controlled trial. BMJ. 2015;350(may14 24):h2219–h2219.

  33. Thyagarajan B, Deshpande SS. Cotrimoxazole and neonatal kernicterus: a review. Drug Chem Toxicol. 2014;37(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  34. Khamash DF, Voskertchian A, Tamma PD, Akinboyo IC, Carroll KC, Milstone AM. Increasing clindamycin and trimethoprim-sulfamethoxazole resistance in pediatric Staphylococcus aureus infections. J Pediatric Infect Dis Soc. 2019;8(4):351–3.

    Article  PubMed  Google Scholar 

  35. Cosgrove SE, Fowler VG Jr. Management of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46(S5):S386–93.

    Article  CAS  PubMed  Google Scholar 

  36. Bouazza N, Pestre V, Jullien V, Curis E, Urien S, Salmon D, et al. Population pharmacokinetics of clindamycin orally and intravenously administered in patients with osteomyelitis. Br J Clin Pharmacol. 2012;74(6):971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaushik A, Kest H. Pediatric methicillin-resistant staphylococcus aureus osteoarticular infections. Vol. 6, Microorganisms.MDPI AG; 2018. https://doi.org/10.3390/microorganisms6020040.

  39. Gurwith MJ, Rabin HR, Love K. Diarrhea associated with clindamycin and ampicillin therapy: preliminary results of a cooperative study. J Infect Dis. 1977;135(Supplement):S104–10.

    Article  PubMed  Google Scholar 

  40. Corey A, So TY. Current clinical trials on the use of ceftaroline in the pediatric population. Vol. 37, Clinical drug investigation. Springer International Publishing; 2017. p. 625–34. Available from: https://pubmed.ncbi.nlm.nih.gov/28382572/.

  41. Chen CW, Chang SP, Huang HT, Tang HJ, Lai CC. The efficacy and safety of ceftaroline in the treatment of acute bacterial infection in pediatric patients – a systemic review and meta-analysis of randomized controlled trials. Infect Drug Resist. 2019;12:1303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  42. •• Bradley JS, Stone GG, Chan PLS, Raber SR, Riccobene T, Mas Casullo V, et al. Phase 2 study of the safety, pharmacokinetics and efficacy of ceftaroline fosamil in neonates and very young infants with late-onset sepsis. Pediatr Infect Dis J. 2020;39(5):411–8. Findings from this study showed that ceftaroline can be used in a wide range of ages (neonates Older children) with minimal side effects for ill patients with sepsis. In addition, dosing was provided which is helpful for clinicians, as resistance to older therapies develops.

    Article  PubMed  Google Scholar 

  43. Yim J, Molloy LM, Newland JG. Use of ceftaroline fosamil in children: review of current knowledge and its application. Infect Dis Ther. 2017;6(1):57–67.

    Article  PubMed  Google Scholar 

  44. Cies JJ, Moore WS, Enache A, Chopra A. Ceftaroline cerebrospinal fluid penetration in the treatment of a ventriculopleural shunt infection: a case report. J Pediatr Pharmacol Ther. 2020;25(4):336–9.

    PubMed  PubMed Central  Google Scholar 

  45. Kato H, Hagihara M, Asai N, Shibata Y, Koizumi Y, Yamagishi Y, et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2021;24:98–105.

    Article  CAS  PubMed  Google Scholar 

  46. Huang C, Chen I, Lin L. Comparing the outcomes of ceftaroline plus vancomycin or daptomycin combination therapy versus vancomycin or daptomycin monotherapy in adults with methicillin-resistant Staphylococcus aureus bacteremia-a meta-analysis. Antibiotics (Basel, Switzerland). 2022;11(8):1104.

    PubMed  Google Scholar 

  47. Wilcox MH, Tack KJ, Bouza E, Herr DL, Ruf BR, Ijzerman MM, et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis. 2009;48(2):203–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupeena Purewal MD.

Ethics declarations

Conflicts of interest

Alison Lopez declares that she has no conflict of interest.

Dr. Purewal is a consultant for Verity Pharmaceuticals and receives honorarium for presentations, however, this is unrelated to the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Infectious Disease

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purewal, R., Lopez, A. Methicillin-Resistant Staphylococcus aureus (MRSA): Review of Current Treatment Options in Pediatrics. Curr Treat Options Peds 9, 23–35 (2023). https://doi.org/10.1007/s40746-023-00265-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-023-00265-2

Keywords

Navigation