Skip to main content

Advertisement

Log in

Bedside EEG Monitoring in the Neonatal Intensive Care Unit

  • Pediatric Neonatology (T Thorkelsson, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

The use of electroencephalogram (EEG) monitoring in the neonatal intensive care unit (NICU) is crucial for the diagnosis and treatment of neonatal seizures. This review highlights the special features of EEG monitoring in the NICU for clinicians.

Recent findings

In neonates, EEG is the best and sometimes the only way for seizure detection. Neonates in the NICU are at high risk for seizures, which are associated with increased risk of mortality and poor long-term neuro-developmental outcome. Therefore, there is a need to develop updated guidelines that will characterize which neonates are at higher risk for seizures and who should be connected to EEG and when, in order to improve the efficiency of EEG monitoring strategies in the NICU. In spite of the increased recognition of high seizure risk, the time course of seizure presentation in neonates and the exact use of EEG are not well characterized. In many NICUs, the decision when and how to monitor high-risk neonates and the duration of EEG monitoring are usually dependent on individual practice and resources, instead of being guided by evidence-based data.

Summary

Neonatal seizures are a common medical emergency, usually a reflection of an underlying neurologic condition. Neonatal seizures have an influence on the outcome, but a clinical evaluation of neonatal seizures is unreliable. Therefore, using EEG monitoring in the NICU is crucial. The American Clinical Neurophysiology Society recommended that neonates with known or suspected acute brain injury, combined with encephalopathy, be monitored with 24 h of EEG. Indications for EEG monitoring in the NICU include characterization of abnormal paroxysmal events, and screening neonates in high-risk clinical scenarios. An EEG confirmation of suspected seizures in neonates is mandatory in order to avoid misdiagnosis, especially among preterm neonates. Continuous EEG monitoring is considered currently as the gold standard for detection of neonatal seizures, in order to initiate treatment, and monitor treatment success. However, since this method has limitations, amplitude-integrated EEG has gained ground providing excellent complementary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Browne TR, Holmes GL. Handbook of epilepsy. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2004.

    Google Scholar 

  2. Vasudevan C, Levene M. Epidemiology and aetiology of neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):185–91. https://doi.org/10.1016/j.siny.2013.05.008.

    Article  PubMed  Google Scholar 

  3. Shellhaas RA. Seizure classification, etiology, and management. Handb Clin Neurol. 2019;162:347–61. https://doi.org/10.1016/B978-0-444-64029-1.00017-5.

    Article  PubMed  Google Scholar 

  4. van Rooij LG, Hellstrom-Westas L, de Vries LS. Treatment of neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):209–15. https://doi.org/10.1016/j.siny.2013.01.001.

    Article  PubMed  Google Scholar 

  5. Glass Hannah C, Shellhaas Renée A. Acute symptomatic seizures in neonates. Sem Ped Neurol. 2019;32:100768. https://doi.org/10.1016/j.spen.2019.08.004This article reviews the etiology, methods of diagnosis, treatment, and current knowledge gaps for neonatal seizures, showing that neonatal seizures are an important sign of neurologic dysfunction in neonates, most often representing acute brain injury, but their clinical identification is not reliable; therefore, EEG should be used to accurately diagnose and manage neonatal seizures.

    Article  Google Scholar 

  6. Clancy RR. Prolonged electroencephalogram monitoring for seizures and their treatment. Clin Perinatol. 2006;33:649–65. https://doi.org/10.1016/j.clp.2006.06.004.

    Article  PubMed  Google Scholar 

  7. Glass HC, Shellhaas RA, Wusthoff CJ, Chang T, Abend NS, Chu CJ, Cilio MR, Glidden DV, Bonifacio SL, Massey S, Tsuchida TN, Silverstein FS, Soul JS, Neonatal Seizure Registry Study Group. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016;174:98–103. https://doi.org/10.1016/j.jpeds.2016.03.035.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pressler RM, Cilio MR, Mizrahi EM, Moshé SL, Nunes ML, Plouin P, Vanhatalo S, Yozawitz E, de Vries LS, PuthenveettilVinayan K, Triki CC, Wilmshurst JM, Yamamoto H, Zuberi SM. The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia. 2021;62:615–28. https://doi.org/10.1111/epi.16815This paper by the Neonatal Seizures Task Force at the International League Against Epilepsy developed neonatal classification framework emphasizes the role of EEG in the diagnosis of seizures in the neonate and includes a classification of seizure types relevant to this age group..

    Article  PubMed  Google Scholar 

  9. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child: Fetal and Neonatal Ed. 2008;93(3):87–191. https://doi.org/10.1136/adc.2005.086314.

    Article  Google Scholar 

  10. Buttle SG, Lemyre B, Sell E, Redpath S, Bulusu S, Webster RJ, Pohl D. Combined conventional and amplitude integrated EEG monitoring in neonates: a prospective study. J Child Neurol. 2019;34(6):313–20. https://doi.org/10.1177/0883073819829256.

    Article  PubMed  Google Scholar 

  11. Shany E, Berger I. Neonatal electroencephalography: review of a practical approach. J Child Neurol. 2011;26:341–55. https://doi.org/10.1177/0883073810384866.

    Article  PubMed  Google Scholar 

  12. Malone A, Ryan CA, Fitzgerald A, Burgoyne L, Connolly S, Boylan GB. Interobserver agreement in neonatal seizure identification. Epilepsia. 2009;50(9):2097–101. https://doi.org/10.1111/j.1528-1167.2009.02132.x.

    Article  PubMed  Google Scholar 

  13. Pisani F, Pavlidis E. The role of electroencephalogram in neonatal seizure detection. Expert Rev Neurother. 2018;18(2):95–100. https://doi.org/10.1080/14737175.2018.1413352.

    Article  CAS  PubMed  Google Scholar 

  14. Wietstock SO, Bonifacio SL, Sullivan JE, Nash KB, Glass HC. Continuous video electroencephalographic (EEG) monitoring for electrographic seizure diagnosis in neonates: a single-center study. J Child Neurol. 2016;31(3):328–32. https://doi.org/10.1177/0883073815592224.

    Article  CAS  PubMed  Google Scholar 

  15. Worden LT, Chinappen DM, Stoyell SM, Gold J, Paixao L, Krishnamoorthy K, Kramer MA, Westover MB, Chu CJ. The probability of seizures during continuous EEG monitoring in high-risk neonates. Epilepsia. 2019;60(12):2508–18. https://doi.org/10.1111/epi.16387.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shellhaas RA, Chang T, Tsuchida T, Scher MS, Riviello JJ, Abend NS, Nguyen S, Wusthoff CJ, Clancy RR. The American Clinical Neurophysiology Society’s guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28(6):611–7. https://doi.org/10.1097/WNP.0b013e31823e96d7.

    Article  PubMed  Google Scholar 

  17. Schreiber JM, Zelleke T, Gaillard WD, Kaulas H, Dean N, Carpenter JL. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care. 2012;17(1):31–8. https://doi.org/10.1007/s12028-012-9715-z.

    Article  PubMed  Google Scholar 

  18. Janáčková S, Boyd S, Yozawitz E, Tsuchida T, Lamblin MD, Gueden S, Pressler R. Electroencephalographic characteristics of epileptic seizures in preterm neonates. Clin Neurophysiol. 201;127(8):2721–2727. https://doi.org/10.1016/j.clinph.2016.05.006.

  19. Awal MA, Lai MM, Azemi G, Boashash B, Colditz PB. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: a structured review. Clin Neurophysiol. 2016;127(1):285–96. https://doi.org/10.1016/j.clinph.2015.05.018.

    Article  PubMed  Google Scholar 

  20. Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015;33:90–8. https://doi.org/10.1016/j.seizure.2015.09.014.

    Article  PubMed  Google Scholar 

  21. Hellstrom-Westas L. Amplitude-integrated electroencephalography for seizure detection in newborn infants. Semin Fetal Neonatal Med. 2018;23(3):175–82. https://doi.org/10.1016/j.siny.2018.02.003.

    Article  PubMed  Google Scholar 

  22. Shany E, Khvatskin S, Golan A, Karplus M. Amplitude-integrated electroencephalography: a tool for monitoring silent seizures in neonates. Pediatr Neurol. 2006;34(3):194–9. https://doi.org/10.1016/j.pediatrneurol.2005.06.018.

    Article  PubMed  Google Scholar 

  23. Pellegrin S, Munoz FM, Padula M, Heath PT, Meller L, Top K, Wilmshurst J, Wiznitzer M, Das MK, Hahn CD, Kucuku M, Oleske J, Vinayan KP, Yozawitz E, Aneja S, Bhat N, Boylan G, Sesay S, Shrestha A, Soul JS, Tagbo B, Joshi J, Soe A, Maltezou HC, Gidudu J, Kochhar S, Pressler RM; Brighton Collaboration Neonatal Seizures Working Group. Neonatal seizures: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2019;37(52):7596–609. https://doi.org/10.1016/j.vaccine.2019.05.031.

    Article  Google Scholar 

  24. Sandoval Karamian AG, Wusthoff CJ. Current and future uses of continuous EEG in the NICU. Front Pediatr. 2021;9: 768670. https://doi.org/10.3389/fped.2021.768670. This article emphasizes the use and importance of cEEG for diagnosis of neonatal seizures showing that centralized remote cEEG interpretation, automated seizure detection, and pre-natal EEG are potential future applications of this important neurodiagnostic tool.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frenkel N, Friger M, Meledin I, Berger I, Marks K, Bassan H, Shany E. Neonatal seizure recognition-comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122(6):1091–7. https://doi.org/10.1016/j.clinph.2010.09.028.

    Article  PubMed  Google Scholar 

  26. van Rooij LG, de Vries LS, van Huffelen AC, Toet MC. Additional value of two-channel amplitude integrated EEG recording in full-term infants with unilateral brain injury. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F160–8. https://doi.org/10.1136/adc.2008.156711.

    Article  PubMed  Google Scholar 

  27. Shah DK, de Vries LS, Hellström-Westas L, Toet MC, Inder TE. Amplitude-integrated electroencephalography in the newborn: a valuable tool. Pediatrics. 2008;122(4):863–5. https://doi.org/10.1542/peds.2008-1000.

    Article  PubMed  Google Scholar 

  28. Wusthoff CJ, Shellhaas RA, Clancy RR. Limitations of single-channel EEG on the forehead for neonatal seizure detection. J Perinatol. 2009;29(3):237–42. https://doi.org/10.1038/jp.2008.195.

    Article  CAS  PubMed  Google Scholar 

  29. Boylan G, Burgoyne L, Moore C, O’Flaherty B, Rennie J. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99(8):1150–5. https://doi.org/10.1111/j.1651-2227.2010.01809.x.

    Article  PubMed  Google Scholar 

  30. Sousa TMA, Gugelmin VS, Fernandes GM, Aucélio CN, Costa KN, Tristão RM. Comparison of conventional, amplitude-integrated and geodesic sensor net EEG used in premature neonates: a systematic review. Arq Neuropsiquiatr. 2019;77(4):260–7. https://doi.org/10.1590/0004-282X20190030.

    Article  PubMed  Google Scholar 

  31. Variane GFT, Rodrigues DP, Pietrobom RFR, França CN, Netto A, Magalhães M. Newborns at high risk for brain injury: the role of the amplitude-integrated electroencephalography. J Pediatr (Rio J). 2022;S0021–7557(21):00175–83. https://doi.org/10.1016/j.jped.2021.10.008. This critical review evaluates a variety of clinical applications of aEEG monitoring in diagnosis, clinical management, and prognosis assessment in critically ill neonates.

    Article  Google Scholar 

  32. Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol. 2012;46(1):32–5. https://doi.org/10.1016/j.pediatrneurol.2011.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lacan L, Betrouni N, Lamblin MD, Chaton L, Delval A, Bourriez JL, Storme L, Derambure P, NguyenThe TS. Quantitative approach to early neonatal EEG visual analysis in hypoxic-ischemic encephalopathy severity: Bridging the gap between eyes and machine. Neurophysiol Clin. 2021;51(2):121–31. https://doi.org/10.1016/j.neucli.2020.12.003. This study provides quantitative EEG parameters that are complementary to visual analysis as early markers of neonatal HIE severity that could be combined in a multiparametric algorithm to improve classification performance. The study emphasizes the central role of early neonatal EEG monitoring.

    Article  PubMed  Google Scholar 

  34. Liu W, Yang Q, Wei H, Dong W, Fan Y, Hua Z. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: a systematic review and meta-analysis. Front Neurol. 2020;11:133. https://doi.org/10.3389/fneur.2020.00133.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bonifacio SL, Hutson S. The term newborn: evaluation for hypoxic-ischemic encephalopathy. Clin Perinatol. 2021;48(3):681–95. https://doi.org/10.1016/j.clp.2021.05.014.

    Article  PubMed  Google Scholar 

  36. Tsuchida TN. EEG background patterns and prognostication of neonatal encephalopathy in the era of hypothermia. J Clin Neurophysiol. 2013;30(2):122–5. https://doi.org/10.1097/WNP.0b013e3182872ac2.

    Article  PubMed  Google Scholar 

  37. Srinivasakumar P, Zempel J, Trivedi S, Wallendorf M, Rao R, Smith B, Inder T, Mathur AM. Treating EEG seizures in hypoxic ischemic encephalopathy: a randomized controlled trial. Pediatrics. 2015;136(5):e1302–9. https://doi.org/10.1542/peds.2014-3777.

    Article  PubMed  Google Scholar 

  38. Glass HC. Hypoxic-ischemic encephalopathy and other neonatal encephalopathies. Continuum (Minneap Minn). 2018;24(1, Child Neurology):57–71. https://doi.org/10.1212/CON.0000000000000557.

    Article  PubMed  Google Scholar 

  39. Boylan GB, Kharoshankaya L, Mathieson SR. Diagnosis of seizures and encephalopathy using conventional EEG and amplitude integrated EEG. Handb Clin Neurol. 2019;162:363–400. https://doi.org/10.1016/B978-0-444-64029-1.00018-7.

    Article  PubMed  Google Scholar 

  40. Auvin S, Charriaut-Marlangue C. Role of seizure in neonatal stroke. Oncotarget. 2017;8(30):48531–2. https://doi.org/10.18632/oncotarget.18212.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dunbar M, Kirton A. Perinatal Stroke. Semin Pediatr Neurol. 2019;32: 100767. https://doi.org/10.1016/j.spen.2019.08.003.

    Article  PubMed  Google Scholar 

  42. Pisani F, Spagnoli C, Falsaperla R, Nagarajan L, Ramantani G. Seizures in the neonate: a review of etiologies and outcomes. Seizure. 2021;85:48–56. https://doi.org/10.1016/j.seizure.2020.12.023. The authors underline the need for an early differential diagnosis between an acute symptomatic seizure and an unprovoked seizures discussing crucial aspects for neonatal management, counselling and prognostication, providing an outlook on future strategies and potential lines of research in this field.

    Article  PubMed  Google Scholar 

  43. Soul JS. Acute symptomatic seizures in term neonates: etiologies and treatments. Semin Fetal Neonatal Med. 2018;23(3):183–90. https://doi.org/10.1016/j.siny.2018.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martinez-Biarge M, Cheong JL, Diez-Sebastian J, Mercuri E, Dubowitz LM, Cowan FM. Risk factors for neonatal arterial ischemic stroke: the importance of the intrapartum period. J Pediatr. 2016;173:62-68.e1. https://doi.org/10.1016/j.jpeds.2016.02.064.

    Article  PubMed  Google Scholar 

  45. Low E, Mathieson SR, Stevenson NJ, Livingstone V, Ryan CA, Bogue CO, Rennie JM, Boylan GB. Early postnatal EEG features of perinatal arterial ischaemic stroke with seizures. PLoS ONE. 2014;9(7): e100973. https://doi.org/10.1371/journal.pone.0100973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castro Conde JR, Fuentes IQ, Campo CG, Sosa AJ, Millán BR, Expósito SH. EEG findings and outcomes of continuous video-EEG monitoring started prior to initiation of seizure treatment in the perinatal stroke. Early Hum Dev. 2018;120:1–9. https://doi.org/10.1016/j.earlhumdev.2018.03.010.

    Article  PubMed  Google Scholar 

  47. MacDonald B, Trauner D. Predicting perinatal stroke outcomes with neonatal EEG activity. Neurology. 2018;90(15 Supplement):P2.299.

    Google Scholar 

  48. Rafay MF, Cortez MA, de Veber GA, Tan-Dy C, Al-Futaisi A, Yoon W, Fallah S, Moore AM. Predictive value of clinical and EEG features in the diagnosis of stroke and hypoxic ischemic encephalopathy in neonates with seizures. Stroke. 2009;40(7):2402–7. https://doi.org/10.1161/STROKEAHA.109.547281.

    Article  PubMed  Google Scholar 

  49. Tekgul H, Gauvreau K, Soul J, Murphy L, Robertson R, Stewart J, Volpe J, Bourgeois B, du Plessis AJ. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics. 2006;117(4):1270–80. https://doi.org/10.1542/peds.2005-1178.

    Article  PubMed  Google Scholar 

  50. Glass HC, Shellhaas RA, Tsuchida TN, Chang T, Wusthoff CJ, Chu CJ, Cilio MR, Bonifacio SL, Massey SL, Abend NS, Soul JS, Neonatal Seizure Registry study group. Seizures in preterm neonates: a multicenter observational cohort study. Pediatr Neurol. 2017;72:19–24. https://doi.org/10.1016/j.pediatrneurol.2017.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Herzberg EM, Machie M, Glass HC, Shellhaas RA, Wusthoff CJ, Chang T, Abend NS, Chu CJ, Cilio MR, Bonifacio SL, Massey SL, McCulloch CE, Soul JS, Neonatal Seizure Registry study group. Seizure severity and treatment response in newborn infants with seizures attributed to intracranial hemorrhage. J Pediatr. 2021;S0022–3476(21):01077–5. https://doi.org/10.1016/j.jpeds.2021.11.012.

    Article  Google Scholar 

  52. Klinger G, Chin CN, Otsubo H, Beyene J, Perlman M. Prognostic value of EEG in neonatal bacterial meningitis. Pediatr Neurol. 2001;24(1):28–31. https://doi.org/10.1016/s0887-8994(00)00221-6.

    Article  CAS  PubMed  Google Scholar 

  53. ter Horst HJ, van Olffen M, Remmelts HJ, de Vries H, Bos AF. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatr. 2010;99(2):194–200. https://doi.org/10.1111/j.1651-2227.2009.01567.x.

    Article  PubMed  Google Scholar 

  54. Falsaperla R, Sciuto L, La Spina L, Sciuto S, Praticò AD, Ruggieri M. Neonatal seizures as onset of Inborn Errors of Metabolism (IEMs): from diagnosis to treatment. A systematic review Metab Brain Dis. 2021;36(8):2195–203. https://doi.org/10.1007/s11011-021-00798-1.

    Article  PubMed  Google Scholar 

  55. Sharma S, Prasad AN. Inborn errors of metabolism and epilepsy: current understanding, diagnosis, and treatment approaches. Int J Mol Sci. 2017 Jul 2;18(7):1384. https://doi.org/10.3390/ijms18071384.

    Article  CAS  PubMed Central  Google Scholar 

  56. Papetti L, Parisi P, Leuzzi V, Nardecchia F, Nicita F, Ursitti F, Marra F, Paolino MC, Spalice A. Metabolic epilepsy: an update. Brain Dev. 2013;35(9):827–41. https://doi.org/10.1016/j.braindev.2012.11.010.

    Article  PubMed  Google Scholar 

  57. Lloyd RO, O’Toole JM, Pavlidis E, Filan PM, Boylan GB. Electrographic seizures during the early postnatal period in preterm infants. J Pediatr. 2017;187:18–25. https://doi.org/10.1016/j.jpeds.2017.03.004.

    Article  PubMed  Google Scholar 

  58. Pisani F, Spagnoli C, Pavlidis E, Facini C, Kouamou Ntonfo GM, Ferrari G, Raheli R. Real-time automated detection of clonic seizures in newborns. Clin Neurophysiol. 2014;125(8):1533–40. https://doi.org/10.1016/j.clinph.2013.12.119.

    Article  PubMed  Google Scholar 

  59. Stevenson NJ, Tapani K, Lauronen L, Vanhatalo S. A dataset of neonatal EEG recordings with seizure annotations. Sci Data. 2019;6: 190039. https://doi.org/10.1038/sdata.2019.39. This dataset presents EEG recordings from neonates, the visual interpretation of the EEG by experts, supporting clinical data and codes to assist access. The dataset can be used as a reference set of neonatal seizures, in studies of inter-observer agreement and for the development of automated methods of seizure detection and other EEG analyses in neonates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Berger MD.

Ethics declarations

Conflict of Interest

Itai Berger declares that he has no conflict of interest.

Oded Hochberg declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Neonatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochberg, O., Berger, I. Bedside EEG Monitoring in the Neonatal Intensive Care Unit. Curr Treat Options Peds 8, 295–307 (2022). https://doi.org/10.1007/s40746-022-00248-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-022-00248-9

Keywords

Navigation