Skip to main content

Advertisement

Log in

Changing the Outcome of a Pediatric Disease: Part I — Clinical Features of ADPKD

  • Pediatric Nephrology (E Nehus and BP Dixon, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this article is to review genetic and clinical features of autosomal dominant polycystic kidney disease (ADPKD) with specific focus on affected children.

Recent Findings

Children manifest many of the same features of ADPKD that impact affected adults. Our understanding of how defective regulation and function of polycystin-1 and/or -2 induce kidney cystogenesis in ADPKD forms the rationale for therapeutic interventions. Of critical importance in recent decades is the realization that the primary target of intervention should be structural kidney disease (as measured by total kidney volume (TKV)), rather than the late clinical feature of declining kidney function. Other markers of high risk for disease progression in childhood may include genetic mutation type and presence of hypertension, proteinuria, and/or glomerular hyperfiltration.

Summary

ADPKD is a common pediatric disease. Our knowledge of its genetic features and clinical impact in children is growing. We must establish valid and reliable tools to identify children with ADPKD who are at the greatest risk of end-stage kidney disease (ESKD) so that safe and effective treatment options can be timed appropriately to alter the long-term outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J et al. US renal data system 2015 Annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svii, S1–305. https://doi.org/10.1053/j.ajkd.2015.12.014.

  2. Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant. 2017;32(8):1356–63. https://doi.org/10.1093/ndt/gfw240.

    Article  PubMed  Google Scholar 

  3. Aung TT, Bhandari SK, Chen Q, Malik FT, Willey CJ, Reynolds K, Jacobsen SJ, Sim JJ. Autosomal dominant polycystic kidney disease prevalence among a racially diverse United States population, 2002 through 2018. Kidney360. 2021. https://doi.org/10.34067/KID.0004522021.

  4. De Rechter S, Breysem L, Mekahli D. Is autosomal dominant polycystic kidney disease becoming a pediatric disorder? Front Pediatr. 2017;5:272. https://doi.org/10.3389/fped.2017.00272.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007;18(7):2143–60. https://doi.org/10.1681/ASN.2006121387.

    Article  CAS  PubMed  Google Scholar 

  6. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98(6):1193–207. https://doi.org/10.1016/j.ajhg.2016.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cornec-Le Gall E, Olson RJ, Besse W, Heyer CM, Gainullin VG, Smith JM, et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am J Hum Genet. 2018;102(5):832–44. https://doi.org/10.1016/j.ajhg.2018.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Besse W, Chang AR, Luo JZ, Triffo WJ, Moore BS, Gulati A, et al. ALG9 mutation carriers develop kidney and liver cysts. J Am Soc Nephrol. 2019;30(11):2091–102. https://doi.org/10.1681/ASN.2019030298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal. 2020;72:109630. https://doi.org/10.1016/j.cellsig.2020.109630. Recommended reading regarding current regulation of polycystin (dys)function and its impact on cytogenesis.

  10. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60. https://doi.org/10.1038/ng0695-151.

    Article  CAS  PubMed  Google Scholar 

  11. Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A. 2002;99(26):16981–6. https://doi.org/10.1073/pnas.252484899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurbegovic A, Kim H, Xu H, Yu S, Cruanes J, Maser RL, et al. Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Mol Cell Biol. 2014;34(17):3341–53. https://doi.org/10.1128/MCB.00687-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat Struct Mol Biol. 2017;24(2):114–22. https://doi.org/10.1038/nsmb.3343.

    Article  CAS  PubMed  Google Scholar 

  14. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25(1):18–32. https://doi.org/10.1681/ASN.2013040398.

    Article  CAS  PubMed  Google Scholar 

  15. •• Nowak KL, Hopp K. Metabolic reprogramming in autosomal dominant polycystic kidney disease: evidence and therapeutic potential. Clin J Am Soc Nephrol. 2020;15(4):577–84. https://doi.org/10.2215/CJN.13291019. Recommended comprehensive overview of metabolic reprogramming in ADPKD.

  16. Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013;19(4):488–93. https://doi.org/10.1038/nm.3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Padovano V, Podrini C, Boletta A, Caplan MJ. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol. 2018;14(11):678–87. https://doi.org/10.1038/s41581-018-0051-1.

    Article  CAS  PubMed  Google Scholar 

  18. Podrini C, Rowe I, Pagliarini R, Costa ASH, Chiaravalli M, Di Meo I, et al. Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Commun Biol. 2018;1:194. https://doi.org/10.1038/s42003-018-0200-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell. 1998;93(2):177–88. https://doi.org/10.1016/s0092-8674(00)81570-6.

    Article  CAS  PubMed  Google Scholar 

  20. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet. 2004;13(24):3069–77. https://doi.org/10.1093/hmg/ddh336.

    Article  CAS  PubMed  Google Scholar 

  21. Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest. 2012;122(11):4257–73. https://doi.org/10.1172/JCI64313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weimbs T. Third-hit signaling in renal cyst formation. J Am Soc Nephrol. 2011;22(5):793–5. https://doi.org/10.1681/ASN.2011030284.

    Article  PubMed  Google Scholar 

  23. Torres JA, Rezaei M, Broderick C, Lin L, Wang X, Hoppe B, et al. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest. 2019;129(10):4506–22. https://doi.org/10.1172/JCI128503.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leonhard WN, Zandbergen M, Veraar K, van den Berg S, van der Weerd L, Breuning M, et al. Scattered deletion of PKD1 in kidneys causes a cystic snowball effect and recapitulates polycystic kidney disease. J Am Soc Nephrol. 2015;26(6):1322–33. https://doi.org/10.1681/ASN.2013080864.

    Article  CAS  PubMed  Google Scholar 

  25. Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17(11):3013–9. https://doi.org/10.1681/ASN.2006080835.

    Article  CAS  PubMed  Google Scholar 

  26. Bae KT, Zhou W, Shen C, Landsittel DP, Wu Z, Tao C, et al. Growth pattern of kidney cyst number and volume in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2019;14(6):823–33. https://doi.org/10.2215/CJN.10360818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cornec-Le Gall E, Audrezet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24(6):1006–13. https://doi.org/10.1681/ASN.2012070650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol. 2012;23(5):915–33. https://doi.org/10.1681/ASN.2011101032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Durkie M, Chong J, Valluru MK, Harris PC, Ong ACM. Biallelic inheritance of hypomorphic PKD1 variants is highly prevalent in very early onset polycystic kidney disease. Genet Med. 2021;23(4):689–97. https://doi.org/10.1038/s41436-020-01026-4.

    Article  CAS  PubMed  Google Scholar 

  30. Waldrop E, Al-Obaide MAI, Vasylyeva TL. GANAB and PKD1 variations in a 12 years old female patient with early onset of autosomal dominant polycystic kidney disease. Front Genet. 2019;10:44. https://doi.org/10.3389/fgene.2019.00044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergmann C, von Bothmer J, Ortiz Bruchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22(11):2047–56. https://doi.org/10.1681/ASN.2010101080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Bergmann C. Early and severe polycystic kidney disease and related ciliopathies: an emerging field of interest. Nephron. 2019;141(1):50–60. https://doi.org/10.1159/000493532. Recommended for an excellent overview of polycystic kidney diseases and ciliopathies.

  33. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int. 2003;64(3):1035–45. https://doi.org/10.1046/j.1523-1755.2003.00185.x.

    Article  PubMed  Google Scholar 

  34. O’Neill WC, Robbin ML, Bae KT, Grantham JJ, Chapman AB, Guay-Woodford LM, et al. Sonographic assessment of the severity and progression of autosomal dominant polycystic kidney disease: the consortium of renal imaging studies in polycystic kidney disease (CRISP). Am J Kidney Dis. 2005;46(6):1058–64. https://doi.org/10.1053/j.ajkd.2005.08.026.

    Article  PubMed  Google Scholar 

  35. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1(1):148–57. https://doi.org/10.2215/CJN.00330705.

    Article  PubMed  Google Scholar 

  36. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(3):479–86. https://doi.org/10.2215/CJN.09500911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cadnapaphornchai MA, Masoumi A, Strain JD, McFann K, Schrier RW. Magnetic resonance imaging of kidney and cyst volume in children with ADPKD. Clin J Am Soc Nephrol. 2011;6(2):369–76. https://doi.org/10.2215/CJN.03780410.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gabow PA, Kaehny WD, Johnson AM, Duley IT, Manco-Johnson M, Lezotte DC, et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 1989;35(2):675–80. https://doi.org/10.1038/ki.1989.38.

    Article  CAS  PubMed  Google Scholar 

  39. Fick GM, Duley IT, Johnson AM, Strain JD, Manco-Johnson ML, Gabow PA. The spectrum of autosomal dominant polycystic kidney disease in children. J Am Soc Nephrol. 1994;4(9):1654–60.

    Article  CAS  Google Scholar 

  40. Zittema D, van den Berg E, Meijer E, Boertien WE, Muller Kobold AC, Franssen CF, et al. Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol. 2014;9(9):1553–62. https://doi.org/10.2215/CJN.08690813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grantham JJM-K, R, Uchic ME, Grant M, Shumate WA, Park CH, Calvet JP. Net fluid secretion by mammalian renal epithelial cells: stimulation by cAMP in polarized cultures derived from established renal cells and from normal and polycystic kidneys. Trans Assoc Am Physicians. 1989;102:158–62.

  42. Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW. Prospective change in renal volume and function in children with ADPKD. Clin J Am Soc Nephrol. 2009;4(4):820–9. https://doi.org/10.2215/CJN.02810608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cadnapaphornchai MA, George DM, McFann K, Wang W, Gitomer B, Strain JD, et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2014;9(5):889–96. https://doi.org/10.2215/CJN.08350813.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol. 1995;5(12):2037–47. https://doi.org/10.1681/ASN.V5122037.

  45. Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, et al. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(10):2439–43. https://doi.org/10.2215/CJN.01010211.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marlais M, Cuthell O, Langan D, Dudley J, Sinha MD, Winyard PJ. Hypertension in autosomal dominant polycystic kidney disease: a meta-analysis. Arch Dis Child. 2016. https://doi.org/10.1136/archdischild-2015-310221.

    Article  PubMed  Google Scholar 

  47. Massella L, Mekahli D, Paripovic D, Prikhodina L, Godefroid N, Niemirska A, et al. Prevalence of hypertension in children with early-stage ADPKD. Clin J Am Soc Nephrol. 2018;13(6):874–83. https://doi.org/10.2215/CJN.11401017.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cadnapaphornchai MA. Hypertension in children with autosomal dominant polycystic kidney disease (ADPKD). Curr Hypertens Rev. 2013;9(1):21–6.

    Article  Google Scholar 

  49. Zeier M, Geberth S, Schmidt KG, Mandelbaum A, Ritz E. Elevated blood pressure profile and left ventricular mass in children and young adults with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1993;3(8):1451–7.

    Article  CAS  Google Scholar 

  50. Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW. Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int. 2008;74(9):1192–6. https://doi.org/10.1038/ki.2008.397.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nowak KL, Farmer H, Cadnapaphornchai MA, Gitomer B, Chonchol M. Vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2016. https://doi.org/10.1093/ndt/gfw013.

    Article  PubMed Central  Google Scholar 

  52. •• Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol. 2019;15(11):713–26. https://doi.org/10.1038/s41581-019-0155-2. A consensus statement on the clinical care of children with ADPKD; highly recommended to providers caring for affected and at-risk children.

  53. Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol. 2009;20(1):205–12. https://doi.org/10.1681/ASN.2008050507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyer O, Gagnadoux MF, Guest G, Biebuyck N, Charbit M, Salomon R, et al. Prognosis of autosomal dominant polycystic kidney disease diagnosed in utero or at birth. Pediatr Nephrol. 2007;22(3):380–8. https://doi.org/10.1007/s00467-006-0327-8.

    Article  PubMed  Google Scholar 

  55. Shamshirsaz AA, Reza Bekheirnia M, Kamgar M, Johnson AM, McFann K, Cadnapaphornchai M, et al. Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int. 2005;68(5):2218–24. https://doi.org/10.1111/j.1523-1755.2005.00678.x.

    Article  PubMed  Google Scholar 

  56. Nowak KL, Cadnapaphornchai MA, Chonchol MB, Schrier RW, Gitomer B. Long-term outcomes in patients with very-early onset autosomal dominant polycystic kidney disease. Am J Nephrol. 2016;44(3):171–8. https://doi.org/10.1159/000448695.

    Article  PubMed  Google Scholar 

  57. Cornec-Le Gall E, Audrezet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, et al. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(3):942–51. https://doi.org/10.1681/ASN.2015010016.

    Article  CAS  PubMed  Google Scholar 

  58. Nowak KL, You Z, Gitomer B, Brosnahan G, Torres VE, Chapman AB, et al. Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2018;29(2):571–8. https://doi.org/10.1681/ASN.2017070819.

    Article  CAS  PubMed  Google Scholar 

  59. Torres VE, Abebe KZ, Schrier RW, Perrone RD, Chapman AB, Yu AS, et al. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. Kidney Int. 2017;91(2):493–500. https://doi.org/10.1016/j.kint.2016.10.018.

    Article  CAS  PubMed  Google Scholar 

  60. Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160–72. https://doi.org/10.1681/ASN.2013101138.

    Article  CAS  PubMed  Google Scholar 

  61. Torres VE, King BF, Chapman AB, Brummer ME, Bae KT, Glockner JF, et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2007;2(1):112–20. https://doi.org/10.2215/CJN.00910306.

    Article  PubMed  Google Scholar 

  62. De Rechter S, Bockenhauer D, Guay-Woodford LM, Liu I, Mallett AJ, Soliman NA, et al. ADPedKD: a global online platform on the management of children with ADPKD. Kidney Int Rep. 2019;4(9):1271–84. https://doi.org/10.1016/j.ekir.2019.05.015.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gimpel C, Bergmann C, Mekahli D. The wind of change in the management of autosomal dominant polycystic kidney disease in childhood. Pediatr Nephrol. 2021. https://doi.org/10.1007/s00467-021-04974-4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Cadnapaphornchai MD.

Ethics declarations

Conflict of Interest

MAC has participated in an advisory board and consultancy (Otsuka), outside the submitted work. DM, represented by University Hospitals Leuven and KU Leuven University (Belgium), received an educational grant (Otsuka, Galapagos), and participated in an advisory board (Genzyme, Otsuka and Galapagos) and consultancy (Otsuka, Reata), all outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Nephrology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadnapaphornchai, M.A., Mekahli, D. Changing the Outcome of a Pediatric Disease: Part I — Clinical Features of ADPKD. Curr Treat Options Peds 8, 65–76 (2022). https://doi.org/10.1007/s40746-022-00244-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-022-00244-z

Keywords

Navigation