Skip to main content

Using 3D Printed Heart Models for Surgical and Catheterization Planning in Congenital Heart Disease

Abstract

Purpose of Review

Review the use of 3D printing for surgical and catheter-based interventions in congenital heart disease (CHD).

Recent Findings

There has been an increasing incorporation of 3D printed models of CHD into clinical practice. In addition, work is underway to develop objective measures to more accurately assess the clinical benefits of 3D printed models.

Summary

3D printed models are becoming more routinely used in the care of patients with CHD. They provide detailed information for pre-procedural planning and simulated interventions. While this is expected to lead to shorter procedural times and improved clinical outcomes, this has been challenging to quantify; however, new tools are being developed to specifically assess these outcomes. Future directions will include increased adoption of 3D imaging, including the use of virtual models and holography, which would be expected to be generated faster and at lower cost than physically printed models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hull CWA, CA), inventor; UVP, Inc. (San Gabriel, CA), assignee. Apparatus for production of three-dimensional objects by stereolithography. United States patent 4575330. 1986.

  2. Hull CW. The birth of 3D printing. Res Technol Manag. 2015;58(6):25–30.

    Google Scholar 

  3. Noecker AM, Chen JF, Zhou Q, White RD, Kopcak MW, Arruda MJ, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52(3):349–53 This paper reports the first use of 3D printed models of a congenital heart defect.

    PubMed  Google Scholar 

  4. Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R, et al. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg. 2006;132(2):264–9.

    PubMed  Google Scholar 

  5. Talanki VR, Peng Q, Shamir SB, Baete SH, Duong TQ, Wake N. Three-dimensional printed anatomic models derived from magnetic resonance imaging data: current state and image acquisition recommendations for appropriate clinical scenarios. J Magn Reson Imaging. 2021.

  6. Parthasarathy J, Krishnamurthy R, Ostendorf A, Shinoka T. 3D printing with MRI in pediatric applications. J Magn Reson Imaging. 2020;51(6):1641–58.

    PubMed  Google Scholar 

  7. Parimi M, Buelter J, Thanugundla V, Condoor S, Parkar N, Danon S, et al. Feasibility and validity of printing 3D heart models from rotational angiography. Pediatr Cardiol. 2018;39(4):653–8.

    PubMed  Google Scholar 

  8. Seckeler MD, Boe BA, Barber BJ, Berman DP, Armstrong AK. Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models. Cardiol Young. 2021;31(9):1407–11.

    PubMed  Google Scholar 

  9. Huang J, Shi H, Chen Q, Hu J, Zhang Y, Song H, et al. Three-dimensional printed model fabrication and effectiveness evaluation in fetuses with congenital heart disease or with a normal heart. J Ultrasound Med. 2021;40(1):15–28.

    PubMed  Google Scholar 

  10. Kurup HK, Samuel BP, Vettukattil JJ. Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev Cardiovasc Ther. 2015;13(12):1281–4.

    CAS  PubMed  Google Scholar 

  11. Gosnell J, Pietila T, Samuel BP, Kurup HK, Haw MP, Vettukattil JJ. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging. 2016;29(6):665–9 A report on the use of hybrid model generation by incorporating data from multiple imaging modalities.

    PubMed  PubMed Central  Google Scholar 

  12. Hadeed K, Guitarte A, Briot J, Dulac Y, Alacoque X, Acar P, et al. Feasibility and accuracy of printed models of complex cardiac defects in small infants from cardiac computed tomography. Pediatr Radiol. 2021;51(11):1983–90.

    PubMed  Google Scholar 

  13. Lee S, Squelch A, Sun Z. Quantitative assessment of 3D printed model accuracy in delineating congenital heart disease. Biomolecules. 2021;11(2).

  14. Dodge-Khatami J, Adebo DA. Evaluation of complex congenital heart disease in infants using low dose cardiac computed tomography. Int J Card Imaging. 2021;37(4):1455–60 A report of the use of lower-dose radiation protocols for obtaining cardiac CT scans. This will be extremly important for widespread adoption of 3D imaging as there is a concern about radiation exposure during medical imaging, particularly for young patients.

    Google Scholar 

  15. Fetterly KA, Ferrero A, Lewis BR, Anderson JH, Hagler DJ, Taggart NW. Radiation dose reduction for 3D angiography images in pediatric and congenital cardiology. Catheter Cardiovasc Interv. 2021;97(4):E502–e9.

    PubMed  Google Scholar 

  16. Abudayyeh I, Gordon B, Ansari MM, Jutzy K, Stoletniy L, Hilliard A. A practical guide to cardiovascular 3D printing in clinical practice: overview and examples. J Interv Cardiol. 2018;31(3):375–83.

    PubMed  Google Scholar 

  17. Townsend K, Pietila T. 3D printing and modeling of congenital heart defects: a technical review. Birth Defects Res. 2018;110(13):1091–7 Review of the technical aspects of 3D model generation and printing.

    CAS  PubMed  Google Scholar 

  18. Yang DH, Park SH, Kim N, Choi ES, Kwon BS, Park CS, et al. Incremental value of 3D printing in the preoperative planning of complex congenital heart disease surgery. JACC Cardiovasc Imaging. 2021;14(6):1265–70.

    PubMed  Google Scholar 

  19. Yıldız O, Köse B, Tanıdır IC, Pekkan K, Güzeltaş A, Haydin S. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease. Diagn Interv Radiol. 2021;27(4):488–96.

    PubMed  PubMed Central  Google Scholar 

  20. Farooqi KM, Gonzalez-Lengua C, Shenoy R, Sanz J, Nguyen K. Use of a three dimensional printed cardiac model to assess suitability for biventricular repair. World J Pediatr Congenit Heart Surg. 2016;7(3):414–6.

    PubMed  Google Scholar 

  21. Garekar S, Bharati A, Chokhandre M, Mali S, Trivedi B, Changela VP, et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg. 2016;7(3):344–50.

    PubMed  Google Scholar 

  22. Bhatla P, Tretter JT, Ludomirsky A, Argilla M, Latson LA Jr, Chakravarti S, et al. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions? Pediatr Cardiol. 2017;38(1):103–14 One of the earlier reports demonstrating the utility of 3D printed models in pre-procedural planning and, in particular, the potential to perform minimally invasive interventions that were thought to not be possible based on standard imaging modalities.

    PubMed  Google Scholar 

  23. Taqatqa AS, Vettukattil JJ. Atrioventricular septal defects: pathology, imaging, and treatment options. Curr Cardiol Rep. 2021;23(8):93.

    PubMed  Google Scholar 

  24. Najm HK, Karamlou T, Ahmad M, Hassan S, Yaman M, Stewart R, et al. Biventricular conversion in unseptatable hearts: “ventricular switch”. Semin Thorac Cardiovasc Surg. 2021;33(1):172–80.

    PubMed  Google Scholar 

  25. Kappanayil M, Koneti NR, Kannan RR, Kottayil BP, Kumar K. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: early experience and proof of concept in a resource-limited environment. Ann Pediatr Cardiol. 2017;10(2):117–25.

    PubMed  PubMed Central  Google Scholar 

  26. Deng X, He S, Huang P, Luo J, Yang G, Zhou B, et al. A three-dimensional printed model in preoperative consent for ventricular septal defect repair. J Cardiothorac Surg. 2021;16(1):229.

    PubMed  PubMed Central  Google Scholar 

  27. Zhao L, Zhou S, Fan T, Li B, Liang W, Dong H. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. J Card Surg. 2018;33(1):24–7.

    PubMed  Google Scholar 

  28. Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol. 2014;172(2):e297–8 One of the first reports of a 3D printed model used to plan a catheter-based intervention for congenital heart disease.

    PubMed  Google Scholar 

  29. McGovern EM, Tretter JT, Moore RA, Goldstein BH. Simulation to success: treatment of a 3D printed heart before complex systemic venous baffle intervention. JACC Case Rep. 2020;2(3):486–7.

    PubMed  PubMed Central  Google Scholar 

  30. Hassler KR, Stephens EH, Miranda WR, Foley TA, Dearani JA. Intra-atrial pulmonary venous conduit leak in criss-cross heart: role of three-dimensional modeling. World J Pediatr Congenit Heart Surg 2021:21501351211037626.

  31. Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85(6):1006–12.

    PubMed  Google Scholar 

  32. Pluchinotta FR, Giugno L, Carminati M. Stenting complex aortic coarctation: simulation in a 3D printed model. EuroIntervention. 2017;13(4):490.

    PubMed  Google Scholar 

  33. Yan C, Wang C, Pan X, Li S, Song H, Liu Q, et al. Three-dimensional printing assisted transcatheter closure of atrial septal defect with deficient posterior-inferior rim. Catheter Cardiovasc Interv. 2018;92(7):1309–14.

    PubMed  Google Scholar 

  34. He L, Cheng GS, Du YJ, Zhang YS. Feasibility of device closure for multiple atrial septal defects with an inferior sinus venosus defect: procedural planning using three-dimensional printed models. Heart Lung Circ. 2019.

  35. Yan C, Li S, Song H, Jin J, Zheng H, Wang C, et al. Off-label use of duct occluder in transcatheter closure of secundum atrial septal defect with no rim to right pulmonary vein. J Thorac Cardiovasc Surg. 2019;157(4):1603–8.

    PubMed  Google Scholar 

  36. Kops SA, Pangburn S, Barber BJ, Seckeler MD. Transcatheter treatment of acquired coronary sinus ostium atresia in a child with complex congenital heart disease. Catheter Cardiovasc Interv. 2020;95(2):E62–E5.

    PubMed  Google Scholar 

  37. Lee DT, Venkatesh P, Bravo-Jaimes K, Lluri G, Yang EH, Tan W, et al. Using a 3-dimensional printed model to plan percutaneous closure of an unroofed coronary sinus. Circ Cardiovasc Imaging 2021:Circimaging121013018.

  38. Jivanji SGM, Qureshi SA, Rosenthal E. Novel use of a 3D printed heart model to guide simultaneous percutaneous repair of severe pulmonary regurgitation and right ventricular outflow tract aneurysm. Cardiol Young. 2019;29(4):534–7.

    PubMed  Google Scholar 

  39. Pluchinotta FR, Sturla F, Caimi A, Giugno L, Chessa M, Giamberti A, et al. 3-Dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int J Cardiol. 2020;309:33–9.

    PubMed  Google Scholar 

  40. Aroney N, Putrino A, Scalia G, Walters D. 3D printed cardiac fistula: guiding percutaneous structural intervention. Catheter Cardiovasc Interv. 2018;92(7):E478–e80.

    PubMed  Google Scholar 

  41. Aroney N, Markham R, Putrino A, Crowhurst J, Wall D, Scalia G, et al. Three-dimensional printed cardiac fistulae: a case series. Eur Heart J Case Rep. 2019;3(2).

  42. Chamberlain RC, Ezekian JE, Sturgeon GM, Barker PCA, Hill KD, Fleming GA. Preprocedural three-dimensional planning aids in transcatheter ductal stent placement: a single-center experience. Catheter Cardiovasc Interv. 2020;95(6):1141–8.

    PubMed  Google Scholar 

  43. Kern MC, Janardhanan R, Kelly T, Fox KA, Klewer SE, Seckeler MD. Multimodality imaging for diagnosis and procedural planning for a ruptured sinus of Valsalva aneurysm. J Cardiovasc Comput Tomogr. 2020;14(6):e139–e42.

    PubMed  Google Scholar 

  44. Aregullin EO, Mohammad Nijres B, Al-Khatib Y, Vettukattil J. Transcatheter Fontan completion using novel balloon and stent system. Catheter Cardiovasc Interv. 2021;97(4):679–84.

    PubMed  Google Scholar 

  45. Seckeler MD, White SC, Klewer SE, Ott P. Transjugular transseptal approach for left ventricular pacing lead in an adult with criss-cross heart. JACC Clin Electrophysiol. 2019;5(8):998–9.

    PubMed  Google Scholar 

  46. Kanawati J, Kanawati AJ, Rowe MK, Khan H, Chan WK, Yee R. Utility of 3-D printing for cardiac resynchronization device implantation in congenital heart disease. HeartRhythm Case Rep. 62020. p. 754-6.

  47. Riahi M, Velasco Forte MN, Byrne N, Hermuzi A, Jones M, Baruteau AE, et al. Early experience of transcatheter correction of superior sinus venosus atrial septal defect with partial anomalous pulmonary venous drainage. EuroIntervention. 2018;14(8):868–76.

    PubMed  Google Scholar 

  48. Velasco Forte MN, Byrne N, Valverde I, Gomez Ciriza G, Hermuzi A, Prachasilchai P, et al. Interventional correction of sinus venosus atrial septal defect and partial anomalous pulmonary venous drainage: procedural planning using 3D printed models. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):275–8.

    PubMed  Google Scholar 

  49. Hansen JH, Duong P, Jivanji SGM, Jones M, Kabir S, Butera G, et al. Transcatheter correction of superior sinus venosus atrial septal defects as an alternative to surgical treatment. J Am Coll Cardiol. 2020;75(11):1266–78 Summary of the experience of developing the techniques for catheter-based closure of superior sinus venous atrial septal defects.

    PubMed  Google Scholar 

  50. Batteux C, Azarine A, Karsenty C, Petit J, Ciobotaru V, Brenot P, et al. Sinus venosus ASDs: imaging and percutaneous closure. Curr Cardiol Rep. 2021;23(10):138.

    CAS  PubMed  Google Scholar 

  51. Hoashi T, Ichikawa H, Nakata T, Shimada M, Ozawa H, Higashida A, et al. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery. Interact Cardiovasc Thorac Surg. 2018;27(5):749–55.

    PubMed  Google Scholar 

  52. Illmann CF, Ghadiry-Tavi R, Hosking M, Harris KC. Utility of 3D printed cardiac models in congenital heart disease: a scoping review. Heart. 2020;106(21):1631–7.

    PubMed  Google Scholar 

  53. Yoo SJ, Hussein N, Peel B, Coles J, van Arsdell GS, Honjo O, et al. 3D modeling and printing in congenital heart surgery: entering the stage of maturation. Front Pediatr. 2021;9:621672.

    PubMed  PubMed Central  Google Scholar 

  54. Nam JG, Lee W, Jeong B, Park EA, Lim JY, Kwak Y, et al. Three-dimensional printing of congenital heart disease models for cardiac surgery simulation: evaluation of surgical skill improvement among inexperienced cardiothoracic surgeons. Korean J Radiol. 2021;22(5):706–13.

    PubMed  Google Scholar 

  55. Hussein N, Honjo O, Haller C, Coles JG, Hua Z, Van Arsdell G, et al. Quantitative assessment of technical performance during hands-on surgical training of the arterial switch operation using 3-dimensional printed heart models. J Thorac Cardiovasc Surg. 2020;160(4):1035–42.

    PubMed  Google Scholar 

  56. Hussein N, Honjo O, Haller C, Hickey E, Coles JG, Williams WG, et al. Hands-on surgical simulation in congenital heart surgery: literature review and future perspective. Semin Thorac Cardiovasc Surg. 2020;32(1):98–105.

    PubMed  Google Scholar 

  57. Hussein N, Lim A, Honjo O, Haller C, Coles JG, Van Arsdell G, et al. Development and validation of a procedure-specific assessment tool for hands-on surgical training in congenital heart surgery. J Thorac Cardiovasc Surg. 2020;160(1):229–40.e1 Development of objective measures of surgical outcomes to start to be able to quantify the benefits of 3D printed models for procedural outcomes in congenital heart disease interventions.

    PubMed  Google Scholar 

  58. Grab M, Hopfner C, Gesenhues A, König F, Haas NA, Hagl C, et al. Development and evaluation of 3D-printed cardiovascular phantoms for interventional planning and training. J Vis Exp. 2021;167.

  59. O’Halloran CP, Qadir A, Ramlogan SR, Nugent AW, Tannous P. Deployed dimensions of the GORE® CARDIOFORM ASD occluder as function of defect size. Pediatr Cardiol. 2021;42(5):1209–15.

    PubMed  Google Scholar 

  60. Boyer PJ, Yell JA, Andrews JG, Seckeler MD. Anxiety reduction after pre-procedure meetings in patients with CHD. Cardiol Young. 2020;1-4.

  61. Kang SL, Shkumat N, Dragulescu A, Guerra V, Padfield N, Krutikov K, et al. Mixed-reality view of cardiac specimens: a new approach to understanding complex intracardiac congenital lesions. Pediatr Radiol. 2020;50(11):1610–6.

    PubMed  Google Scholar 

  62. Ye W, Zhang X, Li T, Luo C, Yang L. Mixed-reality hologram for diagnosis and surgical planning of double outlet of the right ventricle: a pilot study. Clin Radiol. 2021;76(3):237.e1-.e7. Early use of mixed reality for surgical planning for complex congenital heart disease.

  63. Corno AF, Durairaj S, Skinner GJ. Narrative review of assessing the surgical options for double outlet right ventricle. Transl Pediatr. 2021;10(1):165–76.

    PubMed  PubMed Central  Google Scholar 

  64. Vigil C, Lasso A, Ghosh RM, Pinter C, Cianciulli A, Nam HH, et al. Modeling tool for rapid virtual planning of the intracardiac baffle in double-outlet right ventricle. Ann Thorac Surg. 2021;111(6):2078–83.

    PubMed  PubMed Central  Google Scholar 

  65. Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6).

  66. Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Card Imaging. 2021;37(7):2283–90.

    Google Scholar 

  67. Gehrsitz P, Rompel O, Schöber M, Cesnjevar R, Purbojo A, Uder M, et al. Cinematic rendering in mixed-reality holograms: a new 3D preoperative planning tool in pediatric heart surgery. Front Cardiovasc Med. 2021;8:633611.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.

    PubMed  Google Scholar 

  69. Pushparajah K, Chu KYK, Deng S, Wheeler G, Gomez A, Kabir S, et al. Virtual reality three-dimensional echocardiographic imaging for planning surgical atrioventricular valve repair. JTCVS Tech. 2021;7:269–77.

    PubMed  PubMed Central  Google Scholar 

  70. Brun H, Bugge RAB, Suther LKR, Birkeland S, Kumar R, Pelanis E, et al. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Eur Heart J Cardiovasc Imaging 2019;20(8):883-8.

  71. Cen J, Liufu R, Wen S, Qiu H, Liu X, Chen X, et al. Three-dimensional printing, virtual reality and mixed reality for pulmonary atresia: early surgical outcomes evaluation. Heart Lung Circ. 2021;30(2):296–302.

    PubMed  Google Scholar 

  72. Gómez-Ciriza G, Gómez-Cía T, Rivas-González JA, Velasco Forte MN, Valverde I. Affordable three-dimensional printed heart models. Front Cardiovasc Med. 2021;8:642011 Assessment of the real-world costs of 3D printed model generation and demonstration of the low costs. This will be very important for widespread adoption of 3D models in clinical care.

    PubMed  PubMed Central  Google Scholar 

  73. Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol. 2020;27(8):1103–13.

    PubMed  Google Scholar 

  74. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171–84.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Mr. Webber is funded by the National Institutes of Health (T32 GM141830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Seckeler MD, MSc.

Ethics declarations

Conflict of interest

Michael D. Seckeler declares that he has no conflict of interest. Zak Webber declares that he has no conflict of interest. Kenneth A. Fox declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology/CT Surgery

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seckeler, M.D., Webber, Z. & Fox, K.A. Using 3D Printed Heart Models for Surgical and Catheterization Planning in Congenital Heart Disease. Curr Treat Options Peds 8, 115–128 (2022). https://doi.org/10.1007/s40746-022-00238-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-022-00238-x

Keywords

  • 3D printing
  • Congenital heart disease
  • Double outlet right ventricle
  • Atrioventricular septal defect
  • Fontan