Skip to main content
Log in

Management of Fetal Arrhythmias

  • Cardiology/CT Surgery (K Gist, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of the review

Prompt recognition and treatment of hemodynamically significant fetal arrhythmias is paramount to achieving an optimal outcome. As our diagnostic capabilities expand, there is ample opportunity to improve management strategies including initiating targeted therapy based on mechanism of fetal arrhythmia identified on fetal echocardiogram and/or fetal ECG/MCG.

Recent findings

The most recent advancements in diagnostic capabilities using fetal ECG/MCG have allowed for risk stratification of fetuses with or at risk for fetal long QT syndrome. Home fetal heart rate monitoring and its importance in management of fetal atrioventricular block pose great promise in altering the guarded prognosis that currently exists for these patients.

Summary

The spectrum of fetal arrhythmias is substantial. Current ongoing prospective clinical trials will add invaluable information regarding the ideal antiarrhythmic agent for fetal tachyarrhythmias as well as the most effective management protocol to halt the progression to autoimmune-mediated complete atrioventricular block. Wider appreciation of the fetus at risk for arrhythmias and the ensuing evaluation by fMCG and surveillance by echocardiography and adjunct tools will improve both pre- and postnatal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wacker-Gussmann A, Strasburger JF, Cuneo BF, Wakai RT. Diagnosis and treatment of fetal arrhythmia. Am J Perinatol. 2014;31(7):617–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kleinman CS, Nehgme RA. Cardiac arrhythmias in the human fetus. Pediatr Cardiol. 2004;25(3):234–51.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell JL, Cuneo BF, Etheridge SP, Horigome H, Weng HY, Benson DW. Fetal heart rate predictors of long QT syndrome. Circulation. 2012;126(23):2688–95.

    Article  PubMed  Google Scholar 

  4. Jaeggi ET, Nii M. Fetal brady- and tachyarrhythmias: new and accepted diagnostic and treatment methods. Semin Fetal Neonatal Med. 2005;10(6):504–14.

    Article  PubMed  Google Scholar 

  5. Oudijk MA, Visser GH, Meijboom EJ. Fetal tachyarrhythmia–part I: Diagnosis. Indian Pacing Electrophysiol J. 2004;4(3):104–13.

    PubMed  PubMed Central  Google Scholar 

  6. Strasburger JF. Fetal arrhythmias. Prog Pediatr Cardiol. 2000;11(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  7. Andelfinger G, Fouron JC, Sonesson SE, Proulx F. Reference values for time intervals between atrial and ventricular contractions of the fetal heart measured by two Doppler techniques. Am J Cardiol. 2001;88(12):1433–6 (A8).

    Article  CAS  PubMed  Google Scholar 

  8. Cuneo BF, Strasburger JF, Wakai RT. Magnetocardiography in the evaluation of fetuses at risk for sudden cardiac death before birth. J Electrocardiol. 2008;41(2):116 e1-6.

    Article  PubMed  Google Scholar 

  9. Fukushima A, Nakai K, Matsumoto A, Strasburger J, Sugiyama T. Prenatal diagnosis of polymorphic ventricular tachycardia using 64-channel magnetocardiography. Heart Vessels. 2010;25(3):270–3.

    Article  PubMed  Google Scholar 

  10. Cuneo BF, Strasburger JF, Yu S, Horigome H, Hosono T, Kandori A, et al. In utero diagnosis of long QT syndrome by magnetocardiography. Circulation. 2013;128(20):2183–91.

    Article  PubMed  Google Scholar 

  11. Strand S, Lutter W, Strasburger JF, Shah V, Baffa O, Wakai RT. Low-Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers. J Am Heart Assoc. 2019;8(16):e013436 (This study provides an excellent resource on the technical aspects of fMCG, including those that may allow more wide-spread use of fMCG in the clinical realm).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Strand SA, Strasburger JF, Wakai RT. Fetal magnetocardiogram waveform characteristics. Physiol Meas. 2019;40(3):035002 (This work establishes prediction intervals for fMCG waveform intervals and amplitudes in normal fetuses to allow for recognition of the fetus with arrhythmia).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Horigome H, Iwashita H, Yoshinaga M, Shimizu W. Magnetocardiographic demonstration of torsade de pointes in a fetus with congenital long QT syndrome. J Cardiovasc Electrophysiol. 2008;19(3):334–5.

    Article  PubMed  Google Scholar 

  14. Horigome H, Takahashi MI, Asaka M, Shigemitsu S, Kandori A, Tsukada K. Magnetocardiographic determination of the developmental changes in PQ, QRS and QT intervals in the foetus. Acta Paediatr. 2000;89(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  15. Kahler C, Schleussner E, Grimm B, Schneider A, Schneider U, Nowak H, et al. Fetal magnetocardiography: development of the fetal cardiac time intervals. Prenat Diagn. 2002;22(5):408–14.

    Article  PubMed  Google Scholar 

  16. Jaeggi E, Ohman A. Fetal and neonatal arrhythmias. Clin Perinatol. 2016;43(1):99–112.

    Article  PubMed  Google Scholar 

  17. Strasburger JF, Cheulkar B, Wichman HJ. Perinatal arrhythmias: diagnosis and management. Clin Perinatol. 2007;34(4):627–52 (vii-viii).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weber R, Stambach D, Jaeggi E. Diagnosis and management of common fetal arrhythmias. J Saudi Heart Assoc. 2011;23(2):61–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yuan SM. Fetal arrhythmias: diagnosis and treatment. J Matern Fetal Neonatal Med. 2020;33(15):2671–8 (This study presents a review of the diagnosis and treatment of fetal arrhythmias. It includes comment on effectiveness of individual antiarrhythmic agents).

    Article  PubMed  Google Scholar 

  20. Leger J. Management of Fetal and Neonatal Graves’ Disease. Horm Res Paediatr. 2017;87(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Zoeller BB. Treatment of Fetal Supraventricular Tachycardia. Curr Treat Options Cardiovasc Med. 2017;19(1):7.

    Article  PubMed  Google Scholar 

  22. Wacker-Gussmann A, Strasburger JF, Srinivasan S, Cuneo BF, Lutter W, Wakai RT. Fetal Atrial Flutter: Electrophysiology and Associations With Rhythms Involving an Accessory Pathway. J Am Heart Assoc. 2016;5(6).

  23. Johnson WH Jr, Dunnigan A, Fehr P, Benson DW Jr. Association of atrial flutter with orthodromic reciprocating fetal tachycardia. Am J Cardiol. 1987;59(4):374–5.

    Article  PubMed  Google Scholar 

  24. Jaeggi ET, Carvalho JS, De Groot E, Api O, Clur SA, Rammeloo L, et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation. 2011;124(16):1747–54.

    Article  CAS  PubMed  Google Scholar 

  25. Hornberger LK, Sahn DJ. Rhythm abnormalities of the fetus. Heart. 2007;93(10):1294–300.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Strasburger JF. Prenatal diagnosis of fetal arrhythmias. Clin Perinatol. 2005;32(4):891–912 (viii).

    Article  PubMed  Google Scholar 

  27. Parilla BV, Strasburger JF, Socol ML. Fetal supraventricular tachycardia complicated by hydrops fetalis: a role for direct fetal intramuscular therapy. Am J Perinatol. 1996;13(8):483–6.

    Article  CAS  PubMed  Google Scholar 

  28. Strasburger JF, Cuneo BF, Michon MM, Gotteiner NL, Deal BJ, McGregor SN, et al. Amiodarone therapy for drug-refractory fetal tachycardia. Circulation. 2004;109(3):375–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fouron JC, McNeal-Davidson A, Abadir S, Fournier A, Bigras JL, Boutin C, et al. Prenatal diagnosis and prognosis of accelerated idioventricular rhythm. Ultrasound Obstet Gynecol. 2017;50(5):624–31.

    Article  PubMed  Google Scholar 

  30. McIntosh A, Benson DW, von Alvensleben JC, Collins KK, Gilbert L, Cuneo BF. Home monitoring detects fetal supraventricular tachyarrhythmia recurrence during dose reduction of antiarrhythmic therapy. Ultrasound Obstet Gynecol. 2021;57(2):343–4 (This work highlights the clinical utility of fetal home heart rate monitoring in facilitating weaning of antiarrhythmic agents in fetal SVT. In 27 maternal-fetal pairs, 7 mothers identified recurrence using home fetal heart rate monitoring which allowed prompt management adjustments by the cardiologist).

    Article  CAS  PubMed  Google Scholar 

  31. Niu MC, Dickerson HA, Moore JA, de la Uz C, Valdes SO, Kim JJ, et al. Heterotaxy syndrome and associated arrhythmias in pediatric patients. Heart Rhythm. 2018;15(4):548–54 (This study investigated rhythm abnormalities in heterotaxy syndromes. The data supports that bradyarrhythmias are more common in left atrial isomerism, but the tachycarrhythmias were not specific to a particular isomerism subtype).

    Article  PubMed  Google Scholar 

  32. Cuneo BF, Strasburger JF, Wakai RT. The natural history of fetal long QT syndrome. J Electrocardiol. 2016;49(6):807–13.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cuneo BF. The beginnings of long QT syndrome. Curr Opin Cardiol. 2015;30(1):112–7.

    Article  PubMed  Google Scholar 

  34. Winbo A, Fosdal I, Lindh M, Diamant UB, Persson J, Wettrell G, et al. Third trimester fetal heart rate predicts phenotype and mutation burden in the type 1 long QT syndrome. Circ Arrhythm Electrophysiol. 2015;8(4):806–14.

    Article  PubMed  Google Scholar 

  35. Clur SB, Vink AS, Etheridge SP, Robles de Medina PG, Rydberg A, Ackerman MJ, et al. Left ventricular isovolumetric relaxation time is prolonged in fetal long-QT syndrome. Circ Arrhythm Electrophysiol. 2018;11(4):e005797. This work found that the left ventricular isovolumetric relaxation time is prolonged in fetuses with long QT syndrome. This finding combined with recognition of sinus bradycardia are key features to improve fetal diagnosis of long QT syndrome.

  36. Yuan SM. Fetal Arrhythmias: Genetic Background and Clinical Implications. Pediatr Cardiol. 2019;40(2):247–56.

    Article  PubMed  Google Scholar 

  37. Baruteau AE, Abrams DJ, Ho SY, Thambo JB, McLeod CJ, Shah MJ. Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance. J Am Heart Assoc. 2017;6(12).

  38. Berul CI, Sherwin ED. Arrhythmias in a hall of mirrors: Pediatric heterotaxy syndromes. Heart Rhythm. 2021;18(4):613–4 (This is an informative editorial commentary on the complexity of arrhythmias in heterotaxy syndromes).

    Article  PubMed  Google Scholar 

  39. Heaton J, Goyal A. Atrioventricular node. StatPearls: Treasure Island;2021.

  40. Cevik BS, Cevik A, Tavli E. Second degree heart block associated with QT prolongation. Indian Pacing Electrophysiol J. 2010;10(2):96–8.

    PubMed  PubMed Central  Google Scholar 

  41. Cuneo BF, Lee M, Roberson D, Niksch A, Ovadia M, Parilla BV, et al. A management strategy for fetal immune-mediated atrioventricular block. J Matern Fetal Neonatal Med. 2010;23(12):1400–5.

    Article  PubMed  Google Scholar 

  42. Pruetz JD, Miller JC, Loeb GE, Silka MJ, Bar-Cohen Y, Chmait RH. Prenatal diagnosis and management of congenital complete heart block. Birth Defects Res. 2019;111(8):380–8. This is a recent, comprehensive review of fetal complete AV block including discussion of novel therapies such as fetal pacing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hunter LE, Simpson JM. Atrioventricular block during fetal life. J Saudi Heart Assoc. 2015;27(3):164–78.

    Article  PubMed  Google Scholar 

  44. Izmirly P, Kim M, Friedman DM, Costedoat-Chalumeau N, Clancy R, Copel JA, et al. Hydroxychloroquine to Prevent Recurrent Congenital Heart Block in Fetuses of Anti-SSA/Ro-Positive Mothers. J Am Coll Cardiol. 2020;76(3):292–302 (The data from this multi-center clinical trial support the use of hydroxychloroquine to reduce recurrence of complete AVB in mothers with a previous pregnancy complicated by complete heart block. The recurrence rate was reduced by more than half).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ambrosi A, Wahren-Herlenius M. Congenital heart block: evidence for a pathogenic role of maternal autoantibodies. Arthritis Res Ther. 2012;14(2):208.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salomonsson S, Dzikaite V, Zeffer E, Eliasson H, Ambrosi A, Bergman G, et al. A population-based investigation of the autoantibody profile in mothers of children with atrioventricular block. Scand J Immunol. 2011;74(5):511–7.

    Article  CAS  PubMed  Google Scholar 

  47. Jaeggi E, Laskin C, Hamilton R, Kingdom J, Silverman E. The importance of the level of maternal anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. J Am Coll Cardiol. 2010;55(24):2778–84.

    Article  CAS  PubMed  Google Scholar 

  48. Cuneo BF, Moon-Grady AJ, Sonesson SE, Levasseur S, Hornberger L, Donofrio MT, et al. Heart sounds at home: feasibility of an ambulatory fetal heart rhythm surveillance program for anti-SSA-positive pregnancies. J Perinatol. 2017;37(3):226–30.

    Article  CAS  PubMed  Google Scholar 

  49. Cuneo BF, Bitant S, Strasburger JF, Kaizer AM, Wakai RT. Assessment of atrioventricular conduction by echocardiography and magnetocardiography in normal and anti-Ro/SSA-antibody-positive pregnancies. Ultrasound Obstet Gynecol. 2019;54(5):625–33. This work investigated (1) the association between fMCG-measured PR intervals and echocardiographically-measured AV intervals, (2) the ability of the AV interval to predict the PR interval, and (3) the neonatal outomces of fetuses with prolonged AV and PR intervals. An AV interval threshold of +3 z-scores was used to defined 1° AV block. The AV intervals were not predictive of fMCG PR intervals.

  50. Jaeggi ET, Silverman ED, Laskin C, Kingdom J, Golding F, Weber R. Prolongation of the atrioventricular conduction in fetuses exposed to maternal anti-Ro/SSA and anti-La/SSB antibodies did not predict progressive heart block. A prospective observational study on the effects of maternal antibodies on 165 fetuses. J Am Coll Cardiol. 2011;57(13):1487–92.

    Article  PubMed  Google Scholar 

  51. Trucco SM, Jaeggi E, Cuneo B, Moon-Grady AJ, Silverman E, Silverman N, et al. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J Am Coll Cardiol. 2011;57(6):715–23.

    Article  PubMed  Google Scholar 

  52. Jaeggi ET, Hamilton RM, Silverman ED, Zamora SA, Hornberger LK. Outcome of children with fetal, neonatal or childhood diagnosis of isolated congenital atrioventricular block. A single institution’s experience of 30 years. J Am Coll Cardiol. 2002;39(1):130–7.

    Article  PubMed  Google Scholar 

  53. Jaeggi ET, Fouron JC, Silverman ED, Ryan G, Smallhorn J, Hornberger LK. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004;110(12):1542–8.

    Article  PubMed  Google Scholar 

  54. Kan N, Silverman ED, Kingdom J, Dutil N, Laskin C, Jaeggi E. Serial echocardiography for immune-mediated heart disease in the fetus: results of a risk-based prospective surveillance strategy. Prenat Diagn. 2017;37(4):375–82.

    Article  CAS  PubMed  Google Scholar 

  55. Cuneo BF, Ambrose SE, Tworetzky W. Detection and successful treatment of emergent anti-SSA-mediated fetal atrioventricular block. Am J Obstet Gynecol. 2016;215(4):527–8.

    Article  PubMed  Google Scholar 

  56. Howley LW, Schuchardt E, Park D, Gilbert L, Gruenwald J, Cuneo BF. Simultaneous recording of pulsed-wave Doppler signals in innominate vein and transverse aortic arch: new technique to evaluate atrioventricular conduction and fetal heart rhythm. Ultrasound Obstet Gynecol. 2018;52(4):544–5 (This work presents an additional method to evaluate mechanical atrioventricular conduction using the innominate vein and transverse aortic arch pulsed-wave Doppler signals).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie R. F. Gropler MD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology/CT Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gropler, M.R.F., Cuneo, B.F. Management of Fetal Arrhythmias. Curr Treat Options Peds 7, 167–186 (2021). https://doi.org/10.1007/s40746-021-00230-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-021-00230-x

Keywords

Navigation