Skip to main content

Advertisement

Log in

Metabolic Syndrome in Children and Adolescents: Looking to New Markers

  • Hot Topic
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Metabolic syndrome (MetS) was first defined by Reaven, but its diagnostic criteria are controversial, particularly in children and adolescents. MetS is a common health problem globally, and many studies revealed its association with diabetes and cardiovascular diseases, and hence an agreed definition would be useful. To date, many attempts have been performed to achieve consensus and a more accurate definition by investigating new criteria, and introducing new markers and cutoff values. The prevalence of MetS varies greatly, in part due to the application of these different criteria. This variation in definition makes it difficult for public health professionals to accurately identify and manage MetS in pediatrics. New components in defining MetS, such as hyperuricemia, have been added to the standard criteria. An attempt has also been made to identify reliable biomarkers for the identification of MetS, but these have been inconsistent. Even for standard components including obesity, new cutoff criteria that have been adopted for different ethnicities, and gender, the search for a better understanding of MetS is continuing especially in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferns GAA, Ghayour-Mobarhan M. Metabolic syndrome in Iran: a review. Translational Metabolic Syndrome Res. 2018;1:10–22.

    Article  Google Scholar 

  2. Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140:e20171603.

    Article  PubMed  Google Scholar 

  3. Weiss R. Childhood metabolic syndrome: must we define it to deal with it? Diabetes Care. 2011;34(Suppl 2):S171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ford ES, Li C. Defining the metabolic syndrome in children and adolescents: will the real definition please stand up? J Pediatr. 2008;152(2):160–4.

    Article  PubMed  Google Scholar 

  5. Zimmet P, Alberti KGMM, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes. 2007;8(5):299–306.

    Article  PubMed  Google Scholar 

  6. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001;285(19):2486-97.

  7. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med. 2003;157(8):821–7.

    Article  PubMed  Google Scholar 

  8. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation. 2004;110(16):2494–7.

    Article  PubMed  Google Scholar 

  9. Goodman E, Daniels SR, Morrison JA, Huang B, Dolan LM. Contrasting prevalence of and demographic disparities in the World Health Organization and National Cholesterol Education Program Adult Treatment Panel III definitions of metabolic syndrome among adolescents. J Pediatr. 2004;145(4):445–51.

    Article  PubMed  Google Scholar 

  10. Papadopoulou-Alataki E, Papadopoulou-Legbelou K, Doukas L, Karatzidou K, Pavlitou-Tsiontsi A, Pagkalos E. Clinical and biochemical manifestations of syndrome X in obese children. Eur J Pediatr. 2004;163(10):573–9.

    CAS  PubMed  Google Scholar 

  11. Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007;357(23):2329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol. 2006;48(4):677–85.

    Article  CAS  PubMed  Google Scholar 

  13. Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135–48.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr. 2002;76(4):743–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu H, Lu H-Y. Nonalcoholic fatty liver disease and cardiovascular disease. World J Gastroenterol: WJG. 2014;20(26):8407–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Anderson AD, Solorzano CM, McCartney CR. Childhood obesity and its impact on the development of adolescent PCOS. Semin Reprod Med. 2014;32(3):202–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.

    Article  PubMed  Google Scholar 

  19. Nemiary D, Shim R, Mattox G, Holden K. The relationship between obesity and depression among adolescents. Psychiatr Ann. 2012;42(8):305–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Silverstein J, Cheng P, Ruedy KJ, Kollman C, Beck RW, Klingensmith GJ, et al. Depressive symptoms in youth with type 1 or type 2 diabetes: results of the Pediatric Diabetes Consortium Screening Assessment of Depression in Diabetes Study. Diabetes Care. 2015;38(12):2341–3.

    Article  CAS  PubMed  Google Scholar 

  21. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62(7):569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dorkova Z, Petrasova D, Molcanyiova A, Popovnakova M, Tkacova R. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome. Chest. 2008;134(4):686–92.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma SK, Agrawal S, Damodaran D, Sreenivas V, Kadhiravan T, Lakshmy R, et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med. 2011;365(24):2277–86.

    Article  CAS  PubMed  Google Scholar 

  24. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochem Biophys Res Commun. 2012;425(3):560–4.

    Article  CAS  PubMed  Google Scholar 

  25. Santaniemi M, Kesaniemi YA, Ukkola O. Low plasma adiponectin concentration is an indicator of the metabolic syndrome. Eur J Endocrinol. 2006;155(5):745–50.

    Article  CAS  PubMed  Google Scholar 

  26. Gilardini L, McTernan PG, Girola A, da Silva NF, Alberti L, Kumar S, et al. Adiponectin is a candidate marker of metabolic syndrome in obese children and adolescents. Atherosclerosis. 2006;189(2):401–7.

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Xu L, Zhao Y, Li L, Fu J, Zhang Q, et al. Leptin–adiponectin imbalance as a marker of metabolic syndrome among Chinese children and adolescents: The BCAMS study. PLoS One. 2017;12(10):e0186222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. O'Neill S, Bohl M, Gregersen S, Hermansen K, O'Driscoll L. Blood-based biomarkers for metabolic syndrome. Trends Endocrinol Metab. 2016;27(6):363–74.

    Article  CAS  PubMed  Google Scholar 

  29. Falahi E, Khalkhali Rad AH, Roosta S. What is the best biomarker for metabolic syndrome diagnosis? Diabetes Metab Syndr. 2015;9(4):366–72.

    Article  PubMed  Google Scholar 

  30. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29(6):1357–62.

    Article  CAS  PubMed  Google Scholar 

  31. Esteghamati A, Noshad S, Khalilzadeh O, Morteza A, Nazeri A, Meysamie A, et al. Contribution of serum leptin to metabolic syndrome in obese and nonobese subjects. Arch Med Res. 2011;42(3):244–51.

    Article  CAS  PubMed  Google Scholar 

  32. Durá-Travé T, Gallinas-Victoriano F, Lloreda-Martín L, Chueca-Guindulain M, Berrade-Zubiri S. Leptin and metabolic syndrome in obese pediatric population: a cross-sectional study. J Obes Weight Loss Ther. 2016;6:2.

    Google Scholar 

  33. Valle M, Gascón F, Martos R, Bermudo F, Ceballos P, Suanes A. Relationship between high plasma leptin concentrations and metabolic syndrome in obese pre-pubertal children. Int J Obes. 2003;27:13–8.

    Article  CAS  Google Scholar 

  34. Mi J, Munkonda MN, Li M, Zhang M-X, Zhao X-Y, Fouejeu PCW, et al. Adiponectin and leptin metabolic biomarkers in Chinese children and adolescents. J Obes. 2010;2010:10.

    Article  CAS  Google Scholar 

  35. Nappo A, González-Gil EM, Ahrens W, Bammann K, Michels N, Moreno LA, et al. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: results from the IDEFICS study. Nutr Metab Cardiovasc Dis. 2017;27(6):543–51.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshinaga M, Sameshima K, Tanaka Y, Wada A, Hashiguchi J, Tahara H, et al. Adipokines and the prediction of the accumulation of cardiovascular risk factors or the presence of metabolic syndrome in elementary school children. Circulation journal : official journal of the Japanese Circulation Society. 2008;72(11):1874–8.

    Article  CAS  Google Scholar 

  37. Madeira I, Bordallo MA, Rodrigues NC, Carvalho C, Gazolla F, Collett-Solberg P, et al. Leptin as a predictor of metabolic syndrome in prepubertal children. Arch Endocrinol Metab. 2017;61(1):7–13.

    Article  PubMed  Google Scholar 

  38. Ghantous CM, Azrak Z, Hanache S, Abou-Kheir W, Zeidan A. Differential role of leptin and adiponectin in cardiovascular system. Int J Endocrinol. 2015;2015:13.

    Article  Google Scholar 

  39. Kotani K, Sakane N. Leptin:adiponectin ratio and metabolic syndrome in the general Japanese population. Korean J Lab Med. 2011;31(3):162–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cicero AF, Magni P, More M, Ruscica M, Borghi C, Strollo F. Metabolic syndrome, adipokines and hormonal factors in pharmacologically untreated adult elderly subjects from the Brisighella Heart Study historical cohort. Obes Facts. 2012;5(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  41. Finucane FM, Luan J, Wareham NJ, Sharp SJ, O'Rahilly S, Balkau B, et al. Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals. Diabetologia. 2009;52(11):2345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelishadi R, Hashemipour M, Mohammadifard N, Alikhassy H, Adeli K. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol. 2008;69(5):721–9.

    Article  CAS  Google Scholar 

  43. Perna S, Guido D, Carcagnì A, Isu A, Faliva MA, Peroni G, et al. Relationship between desacilated ghrelin and metabolic syndrome factors in overweight and obese italian adults: a cross sectional study. Nutrition. 2016;32(3):404.

    Google Scholar 

  44. McLaughlin T, Abbasi F, Lamendola C, Frayo RS, Cummings DE. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. J Clin Endocrinol Metab. 2004;89(4):1630–5.

    Article  CAS  PubMed  Google Scholar 

  45. St-Pierre DH, Karelis AD, Coderre L, Malita F, Fontaine J, Mignault D, et al. Association of acylated and nonacylated ghrelin with insulin sensitivity in overweight and obese postmenopausal women. The Journal of Clinical Endocrinology & Metabolism. 2007;92(1):264–9.

    Article  CAS  Google Scholar 

  46. Razzaghy-Azar M, Nourbakhsh M, Pourmoteabed A, Nourbakhsh M, Ilbeigi D, Khosravi M. An evaluation of acylated ghrelin and obestatin levels in childhood obesity and their association with insulin resistance, metabolic syndrome, and oxidative stress. J Clin Med. 2016;5:7.

    Article  CAS  Google Scholar 

  47. Kraja AT, Province MA, Arnett D, Wagenknecht L, Tang W, Hopkins PN, et al. Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster. Nutr Metabolism. 2007;4:28.

    Article  CAS  Google Scholar 

  48. Kodaman N, Aldrich MC, Sobota R, Asselbergs FW, Brown NJ, Moore JH, et al. Plasminogen activator inhibitor-1 and diagnosis of the metabolic syndrome in a West African population. J American Heart Association: Cardiovascular Cerebrovascular Disease. 2016;5(10):e003867.

    Article  CAS  Google Scholar 

  49. Al-Hamodi Z, Ismail IS, Saif-Ali R, Ahmed KA, Muniandy S. Association of plasminogen activator inhibitor-1 and tissue plasminogen activator with type 2 diabetes and metabolic syndrome in Malaysian subjects. Cardiovasc Diabetol. 2011;10(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol. 2006;26(10):2200–7.

    Article  CAS  PubMed  Google Scholar 

  51. Sudi KM, Gallistl S, Weinhandl G, Muntean W, Borkenstein MH. Relationship between plasminogen activator inhibitor-1 antigen, leptin, and fat mass in obese children and adolescents. Metab Clin Exp. 2000;49(7):890–5.

    Article  CAS  PubMed  Google Scholar 

  52. Appel SJ, Harrell JS, Davenport ML. Central obesity, the metabolic syndrome, and plasminogen activator inhibitor-1 in young adults. J Am Acad Nurse Pract. 2005;17(12):535–41.

    Article  PubMed  Google Scholar 

  53. Berberoǧlu M, Evliyaoǧlu O, Adıyaman P, Öcal G, Ulukol Β, Şimşek F, et al. Plasminogen activator inhibitor-1 (PAI-1) gene polymorphism (−675 4G/SG) associated with obesity and vascular risk in children. J Pediatr Endocrinol Metab. 2006:741.

  54. Ford ES, Ajani UA, Mokdad AH. The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care. 2005;28(4):878.

    Article  PubMed  Google Scholar 

  55. Shin JY, Kim SY, Jeung MJ, Eun SH, Woo CW, Yoon SY, et al. Serum adiponectin, C-reactive protein and TNF-α levels in obese Korean children. J Pediatr Endocrinol Metab. 2008:23.

  56. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62(11):1543–52.

    Article  CAS  PubMed  Google Scholar 

  57. De Filippo G, Rendina D, Moccia F, Rocco V, Campanozzi A. Interleukin-6, soluble interleukin-6 receptor/interleukin-6 complex and insulin resistance in obese children and adolescents. J Endocrinol Investig. 2015;38(3):339–43.

    Article  CAS  Google Scholar 

  58. Yeste D, Vendrell J, Tomasini R, Broch M, Gussinyé M, Megia A, et al. Interleukin-6 in obese children and adolescents with and without glucose intolerance. Diabetes Care. 2007;30(7):1892–4.

    Article  CAS  PubMed  Google Scholar 

  59. Tam CS, Garnett SP, Cowell CT, Heilbronn LK, Lee JW, Wong M, et al. IL-6, IL-8 and IL-10 levels in healthy weight and overweight children. Hormone Research in Paediatrics. 2010;73(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  60. Bao P, Liu G, Wei Y. Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. Int J Clin Exp Med. 2015;8(8):13491–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu M, Yu Z, Luo D, Zhang H, Li J, Liang F, et al. Association between −174G>C polymorphism in the IL-6 promoter region and the risk of obesity: a meta-analysis. Medicine. 2018;97(33):e11773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Teixeira AA, Quinto BMR, Dalboni MA, Rodrigues CJO, Batista MC. Association of IL-6 polymorphism -174G/C and metabolic syndrome in hypertensive patients. Biomed Res Int. 2015;2015:927589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Suazo J, Smalley SV, Hodgson MI, Weisstaub G, Gonzalez A, Santos JL. Association between genetic polymorphisms of interleukin 6 (IL6), IL6R and IL18 with metabolic syndrome in obese Chilean children. Rev Med Chil. 2014;142(3):290–8.

    Article  PubMed  Google Scholar 

  64. Musialik K. The influence of chosen adipocytokines on blood pressure values in patients with metabolic syndrome. Kardiol Pol. 2012;70(12):1237–42.

    PubMed  Google Scholar 

  65. Bălăşoiu M, Bălăşoiu AT, Stepan AE, Dinescu SN, Avrămescu CS, Dumitrescu D, et al. Proatherogenic adipocytokines levels in metabolic syndrome. Romanian journal of morphology and embryology =. Revue roumaine de morphologie et embryologie. 2014;55(1):29–33.

    PubMed  Google Scholar 

  66. Alikaşifoğlu A, Gönç N, Özön ZA, Sen Y, Kandemir N. The relationship between serum adiponectin, tumor necrosis factor-alpha, leptin levels and insulin sensitivity in childhood and adolescent obesity: adiponectin is a marker of metabolic syndrome. J Clin Res Pediatr Endocrinol. 2009;1(5):233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mirhafez SR, Avan A, Pasdar A, Kazemi E, Ghasemi F, Tajbakhsh A, et al. Association of tumor necrosis factor-α promoter G-308A gene polymorphism with increased triglyceride level of subjects with metabolic syndrome. Gene. 2015;568(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  68. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  69. van Exel E, Gussekloo J, de Craen AJ, Frolich M. Bootsma-Van Der Wiel A, Westendorp RG. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes. 2002;51(4):1088–92.

    Article  PubMed  Google Scholar 

  70. Esposito K, Pontillo A, Giugliano F, Giugliano G, Marfella R, Nicoletti G, et al. Association of low interleukin-10 levels with the metabolic syndrome in obese women. J Clin Endocrinol Metab. 2003;88(3):1055–8.

    Article  CAS  PubMed  Google Scholar 

  71. Calcaterra V, De Amici M, Klersy C, Torre C, Brizzi V, Scaglia F, et al. Adiponectin, IL-10 and metabolic syndrome in obese children and adolescents. Acta Biomed. 2009;80(2):117–23.

    PubMed  Google Scholar 

  72. Chang JS, Bai CH, Huang ZC, Owaga E, Chao KC, Chang CC, et al. Interleukin 10 and clustering of metabolic syndrome components in pediatrics. Eur J Clin Investig. 2014;44(4):384–94.

    Article  CAS  Google Scholar 

  73. Nishida M, Moriyama T, Sugita Y, Yamauchi-Takihara K. Interleukin-10 associates with adiponectin predominantly in subjects with metabolic syndrome. Circ J. 2007;71(8):1234–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hampe CS, Shaffer ML, Roth CL. Associations between liver enzyme levels and parameters of the metabolic syndrome in obese children. Hormone Research in Paediatrics. 2017;88(3-4):265–73.

    Article  CAS  PubMed  Google Scholar 

  75. Pohjantähti-Maaroos H, Palomäki A, Kankkunen P, Laitinen R, Husgafvel S, Oksanen K. Circulating oxidized low-density lipoproteins and arterial elasticity: comparison between men with metabolic syndrome and physically active counterparts. Cardiovasc Diabetol. 2010;9:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Krzystek-Korpacka M, Patryn E, Hotowy K, Czapinska E, Majda J, Kustrzeba-Wojcicka I, et al. Paraoxonase (PON)-1 activity in overweight and obese children and adolescents: association with obesity-related inflammation and oxidative stress. Adv Clin Exp Med. 2013;22(2):229–36.

    PubMed  Google Scholar 

  77. Yilmaz H, Sayar N, Yilmaz M, Gurkan U, Sesal C, Tosu R, et al. Serum paraoxonase 1 activity in women with metabolic syndrome. Kardiol Pol. 2010;68(11):1219–24.

    PubMed  Google Scholar 

  78. Al-Heety QQ, Kasabri V, Akour A, Naffa R, Abu RS. Cross-sectional correlates of paraoxonase 1 and soluble intercellular adhesion molecule-1 in metabolic syndrome patients with and without diabetes. Therapeutic Advances Endocrinol Meta. 2018;9:303–10.

    Article  CAS  Google Scholar 

  79. Zaki M, Basha WA, Yousef W, Ismail AS, Youness E, Hussein T, et al. Serum paraoxonase-1 activity in Egyptian premenopausal women with metabolic syndrome and its relation with recurrent pre-eclampsia risk. J Appl Pharmaceutical Sci. 2018;8(02):054–9.

    CAS  Google Scholar 

  80. Adhe-Rojekar A, Mogarekar MR, Rojekar MV. Paraoxonase activity in metabolic syndrome in children and adolescents. Caspian J Internal Med. 2018;9(2):116–20.

    Google Scholar 

  81. Ferre N, Feliu A, Garcia-Heredia A, Marsillach J, Paris N, Zaragoza-Jordana M, et al. Impaired paraoxonase-1 status in obese children. Relationships with insulin resistance and metabolic syndrome. Clin Biochem. 2013;46(18):1830–6.

    Article  CAS  PubMed  Google Scholar 

  82. Maggio M, Lauretani F, Ceda GP, Bandinelli S, Basaria S, Paolisso G, et al. Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study. Am J Physiol Endocrinol Metab. 2007;292(1):E353–E8.

    Article  CAS  PubMed  Google Scholar 

  83. Brand JS, Rovers MM, Yeap BB, Schneider HJ, Tuomainen T-P, Haring R, et al. Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: an individual participant data meta-analysis of observational studies. PLoS One. 2014;9(7):e100409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sorensen K, Aksglaede L, Munch-Andersen T, Aachmann-Andersen NJ, Petersen JH, Hilsted L, et al. Sex hormone-binding globulin levels predict insulin sensitivity, disposition index, and cardiovascular risk during puberty. Diabetes Care. 2009;32(5):909–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Aydın B, Winters SJ. Sex hormone-binding globulin in children and adolescents. J Clin Res Pediatr Endocrinol. 2016;8(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Al-Daghri NM, Khan N, Sabico S, Al-Attas OS, Alokail MS, Kumar S. Gender-specific associations of serum sex hormone-binding globulin with features of metabolic syndrome in children. Diabetol Metab Syndr. 2016;8(1):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Arrigo T, Chirico V, Salpietro V, Munafo C, Ferrau V, Gitto E, et al. High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur J Endocrinol. 2013;168(4):631–8.

    Article  CAS  PubMed  Google Scholar 

  88. Chen L, Li Y, Zhang F, Zhang S, Zhou X, Ji L. Association of serum ferritin levels with metabolic syndrome and insulin resistance in a Chinese population. J Diabetes Complicat. 2017;31(2):364–8.

    Article  Google Scholar 

  89. Pereira da Silva N, Suano de Souza FI, Ifanger Pendezza A, Luiz Affonso Fonseca F, Hix S, Oliveira AC, et al. Homocysteine and cysteine levels in prepubertal children: association with waist circumference and lipid profile. Nutrition. 2013;29(1):166–71.

    Article  CAS  Google Scholar 

  90. Yakub M, Schulze KJ, Khatry SK, Stewart CP, Christian P, West KP. High plasma homocysteine increases risk of metabolic syndrome in 6 to 8 year old children in rural Nepal. Nutrients. 2014;6(4):1649–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Budak N, Yazici C, Öztürk A, Bayram F, Mazıcıoğlu MM, Kurtoglu S. Is plasma homocysteine level associated with metabolic syndrome components in adolescents? Metab Syndr Relat Disord. 2009;7(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  92. Martos R, Valle M, Morales R, Cañete R, Gavilan MI, Sánchez-Margalet V. Hyperhomocysteinemia correlates with insulin resistance and low-grade systemic inflammation in obese prepubertal children. Metabolism. 2006;55(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  93. Li N, Zhang S, Li W, Wang L, Liu H, Li W, et al. Prevalence of hyperuricemia and its related risk factors among preschool children from China. Sci Rep. 2017;7(1):9448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Billiet L, Doaty S, Katz JD, Velasquez MT. Review of hyperuricemia as new marker for metabolic syndrome. ISRN Rheumatol. 2014;2014:852954.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu Z, Liang L, Meng Z, Hou L, Zhang L, Jiang Z, editors. Serum uric acid and its correlation with metabolic syndrome factors in simple obesity children. Hormone Research In Paediatrics; 2018: Karger Allschwilerstrasse 10, Ch-4009 Basel, Switzerland.

  96. Silva HA, Carraro JC, Bressan J, Hermsdorff HH. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk. Einstein (Sao Paulo). 2015;13(2):202–8.

    Article  Google Scholar 

  97. Mazidi M, Katsiki N, Mikhailidis DP, Banach M. The link between insulin resistance parameters and serum uric acid is mediated by adiposity. Atherosclerosis. 2018;270:180–6.

    Article  CAS  PubMed  Google Scholar 

  98. Soukup M, Biesiada I, Henderson A, Idowu B, Rodeback D, Ridpath L, et al. Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol Metab Syndr. 2012;4(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen LY, Zhu WH, Chen ZW, Dai HL, Ren JJ, Chen JH, et al. Relationship between hyperuricemia and metabolic syndrome. J Zhejiang Univ Sci B. 2007;8(8):593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ford ES, Li C, Cook S, Choi HK. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007;115(19):2526–32.

    Article  CAS  PubMed  Google Scholar 

  101. Lee MS, Wahlqvist ML, Yu HL, Pan WH. Hyperuricemia and metabolic syndrome in Taiwanese children. Asia Pac J Clin Nutr. 2007;16(Suppl 2):594–600.

    CAS  PubMed  Google Scholar 

  102. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J PhysiologyRenal Physiol. 2006;290(3):F625–F31.

    Article  CAS  Google Scholar 

  103. Yuan H, Yu C, Li X, Sun L, Zhu X, Zhao C, et al. Serum uric acid levels and risk of metabolic syndrome: a dose-response meta-analysis of prospective studies. The Journal of Clinical Endocrinology & Metabolism. 2015;100(11):4198–207.

    Article  CAS  Google Scholar 

  104. Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR Jr. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. Jama. 2008;299(19):2287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hurtado-Roca Y, Bueno H, Fernandez-Ortiz A, Ordovas JM, Ibañez B, Fuster V, et al. Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance. Diabetes. 2017;66(2):474–82.

    Article  CAS  PubMed  Google Scholar 

  106. Calcaterra V, De Giuseppe R, Biino G, Mantelli M, Marchini S, Bendotti G, et al. Relation between circulating oxidized-LDL and metabolic syndrome in children with obesity: the role of hypertriglyceridemic waist phenotype. J Pediatr Endocrinol Metab. 2017;30(12):1257–63.

    Article  CAS  PubMed  Google Scholar 

  107. Domenico T, Anna DS, Sonia C, Naga C, Wanqing L, Tiebing L, et al. Oxidized derivatives of linoleic acid in pediatric metabolic syndrome: is their pathogenic role modulated by the genetic background and the gut microbiota. Antioxid Redox Signal. 2019;30(2):241–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Dr. Danial Kahrizi for reviewing their paper. We would like to thank the Mashhad University of Medical Sciences Research Council for all it’s supports.

Author information

Authors and Affiliations

Authors

Contributions

Writing the manuscript: M.F. Editing the manuscript: G.F., M.M-Z., H.G., and E.B. Supervision: Z.M. and M.G-M.

Corresponding author

Correspondence to Majid Ghayour-Mobarhan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mostafa Fazeli and Mohammad Mohammad-Zadeh these authors equally as first.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli, M., Mohammad-Zadeh, M., Meshkat, Z. et al. Metabolic Syndrome in Children and Adolescents: Looking to New Markers. Curr Treat Options Peds 7, 152–166 (2021). https://doi.org/10.1007/s40746-021-00226-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-021-00226-7

Keywords

Navigation