Skip to main content
Log in

Surgical Considerations and Management Options in Premature and Very Low Birth Weight Infants With Complex Congenital Heart Disease

  • Cardiology/CT Surgery (K Gist, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide a concise discussion regarding surgical management of infants born pre-term and/or of low birth weight with congenital heart disease (CHD). The following provides a summary of current available experiential data and treatment paradigms that remain in evolution for this high-risk subset of infants. The composite of these findings supports center- and patient-specific decision-making to define the optimal timing and technique utilized for the palliation and definitive surgical treatment of CHD across a spectrum of severity.

Recent Findings

The following establishes that infants born both pre-term and of low birth weight represent a high-risk surgical cohort with CHD. Despite this increased risk of both morbidity and mortality following surgical palliation or definitive anatomic correction, advancements in prenatal diagnostics, in postnatal resuscitation, and in the conduct of complex neonatal surgery and cardiopulmonary bypass now enable early intervention with improved outcomes and favorable long-term risk of need for re-intervention.

Summary

Infants of low birth weight and those born pre-term represent a high-risk subset of patients with CHD. Advancements in both surgical technique and the advent of interventional therapies have introduced important considerations that have enabled earlier treatment in a subset of carefully selected patients. Further prospective, well-controlled data are needed to better define the multi-system effects of early surgical intervention in this high-risk patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Blencowe H, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–72. https://doi.org/10.1016/S0140-6736(12)60820-4.

    Article  PubMed  Google Scholar 

  2. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116:e833–8. https://doi.org/10.1542/peds.2005-0397.

    Article  PubMed  Google Scholar 

  3. Chu PY, Li JS, Kosinski AS, Hornik CP, Hill KD. Congenital heart disease in premature infants 25–32 weeks' gestational age. J Pediatr. 2017;181:37–41 e31. https://doi.org/10.1016/j.jpeds.2016.10.033.

    Article  PubMed  Google Scholar 

  4. Rosenthal GL, Wilson PD, Permutt T, Boughman JA, Ferencz C. Birth weight and cardiovascular malformations: a population-based study. The Baltimore-Washington Infant Study. Am J Epidemiol. 1991;133:1273–81. https://doi.org/10.1093/oxfordjournals.aje.a115839.

    Article  CAS  PubMed  Google Scholar 

  5. Curzon CL, Milford-Beland S, Li JS, O'Brien SM, Jacobs JP, Jacobs ML, et al. Cardiac surgery in infants with low birth weight is associated with increased mortality: analysis of the Society of Thoracic Surgeons Congenital Heart Database. J Thorac Cardiovasc Surg. 2008;135:546–51. https://doi.org/10.1016/j.jtcvs.2007.09.068.

    Article  PubMed  Google Scholar 

  6. Archer JM, Yeager SB, Kenny MJ, Soll RF, Horbar JD. Distribution of and mortality from serious congenital heart disease in very low birth weight infants. Pediatrics. 2011;127:293–9. https://doi.org/10.1542/peds.2010-0418.

    Article  PubMed  Google Scholar 

  7. Levey A, Glickstein JS, Kleinman CS, Levasseur SM, Chen J, Gersony WM, et al. The impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes. Pediatr Cardiol. 2010;31:587–97. https://doi.org/10.1007/s00246-010-9648-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Story L, Pasupathy D, Sankaran S, Sharland G, Kyle P. Influence of birthweight on perinatal outcome in fetuses with antenatal diagnosis of congenital heart disease. J Obstet Gynaecol Res. 2015;41:896–903. https://doi.org/10.1111/jog.12652.

    Article  PubMed  Google Scholar 

  9. Cheng YW, et al. Perinatal outcomes in low-risk term pregnancies: do they differ by week of gestation? Am J Obstet Gynecol. 2008;199(370):e371–7. https://doi.org/10.1016/j.ajog.2008.08.008.

    Article  Google Scholar 

  10. Costello JM, Polito A, Brown DW, McElrath T, Graham DA, Thiagarajan RR, et al. Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease. Pediatrics. 2010;126:277–84. https://doi.org/10.1542/peds.2009-3640.

    Article  PubMed  Google Scholar 

  11. Goff DA, Luan X, Gerdes M, Bernbaum J, D'Agostino JA, Rychik J, et al. Younger gestational age is associated with worse neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2012;143:535–42. https://doi.org/10.1016/j.jtcvs.2011.11.029.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Obstetrics A. C. o. P. B.-.-. ACOG practice bulletin no. 107: induction of labor. Obstet Gynecol. 2009;114:386–97. https://doi.org/10.1097/AOG.0b013e3181b48ef5.

    Article  Google Scholar 

  13. Walsh CA, MacTiernan A, Farrell S, Mulcahy C, McMahon C, Franklin O, et al. Mode of delivery in pregnancies complicated by major fetal congenital heart disease: a retrospective cohort study. J Perinatol. 2014;34:901–5. https://doi.org/10.1038/jp.2014.104.

    Article  CAS  PubMed  Google Scholar 

  14. Rudolph AM. Myocardial growth before and after birth: clinical implications. Acta Paediatr. 2000;89:129–33. https://doi.org/10.1080/080352500750028681.

    Article  CAS  PubMed  Google Scholar 

  15. • Bensley JG, Moore L, De Matteo R, Harding R, Black MJ. Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res. 2018;83:880–8. https://doi.org/10.1038/pr.2017.324. This study provides data resulting from the histologic analysis of pre-term hearts and demonstrates that pre-term birth is associated with reduced cardiomyoctye proliferation independent of maturation and size. These findings importantly characterize the immaturity of pre-term hearts and the associated reduction in functional reserve and rehabilitative capacity following surgical correction.

    Article  PubMed  Google Scholar 

  16. Cayabyab R, McLean CW, Seri I. Definition of hypotension and assessment of hemodynamics in the preterm neonate. J Perinatol. 2009;29(Suppl 2):S58–62. https://doi.org/10.1038/jp.2009.29.

    Article  PubMed  Google Scholar 

  17. Marino BS, Bird GL, Wernovsky G. Diagnosis and management of the newborn with suspected congenital heart disease. Clin Perinatol. 2001;28:91–136. https://doi.org/10.1016/s0095-5108(05)70071-3.

    Article  CAS  PubMed  Google Scholar 

  18. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68. https://doi.org/10.1056/NEJM196702162760701.

    Article  PubMed  Google Scholar 

  19. McMahon CJ, et al. Preterm infants with congenital heart disease and bronchopulmonary dysplasia: postoperative course and outcome after cardiac surgery. Pediatrics. 2005;116:423–30. https://doi.org/10.1542/peds.2004-2168.

    Article  PubMed  Google Scholar 

  20. Verder, H., Robertson B., Greisen G., Ebbesen F., Albertsen P., Lundstrøm K., Jacobsen T. Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome. Danish-Swedish Multicenter Study Group N Engl J Med 331, 1051–1055, doi:https://doi.org/10.1056/NEJM199410203311603 (1994).

  21. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349:959–67. https://doi.org/10.1056/NEJMoa023080.

    Article  CAS  PubMed  Google Scholar 

  22. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358:700–8. https://doi.org/10.1056/NEJMoa072788.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–21. https://doi.org/10.1056/NEJMoa054065.

    Article  CAS  PubMed  Google Scholar 

  24. Lim DS, et al. Aminophylline for the prevention of apnea during prostaglandin E1 infusion. Pediatrics. 2003;112:e27–9. https://doi.org/10.1542/peds.112.1.e27.

    Article  CAS  PubMed  Google Scholar 

  25. Galli KK, Zimmerman RA, Jarvik GP, Wernovsky G, Kuypers MK, Clancy RR, et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:692–704. https://doi.org/10.1016/j.jtcvs.2003.09.053.

    Article  PubMed  Google Scholar 

  26. Huppi PS, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics. 2001;107:455–60. https://doi.org/10.1542/peds.107.3.455.

    Article  CAS  PubMed  Google Scholar 

  27. McQuillen PS, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41. https://doi.org/10.1161/01.STR.0000247941.41234.90.

    Article  PubMed  Google Scholar 

  28. Becker KC, Hornik CP, Cotten CM, Clark RH, Hill KD, Smith PB, et al. Necrotizing enterocolitis in infants with ductal-dependent congenital heart disease. Am J Perinatol. 2015;32:633–8. https://doi.org/10.1055/s-0034-1390349.

    Article  PubMed  Google Scholar 

  29. Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Ren Physiol. 2014;307:F149–58. https://doi.org/10.1152/ajprenal.00439.2013.

    Article  CAS  Google Scholar 

  30. Watchko JF, Maisels MJ. Jaundice in low birthweight infants: pathobiology and outcome. Arch Dis Child Fetal Neonatal Ed. 2003;88:F455–8. https://doi.org/10.1136/fn.88.6.f455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Axelrod DM, Chock VY, Reddy VM. Management of the preterm infant with congenital heart disease. Clin Perinatol. 2016;43:157–71. https://doi.org/10.1016/j.clp.2015.11.011. This summary article is written by one of the premier surgical champions for early surgical correction of congenital heart defects, Dr. Reddy. He and his colleagues have published extensively on the safety and benefit of early surgical intervention and provide important contributions to the literature and discussion regarding the optimal timing for treatment of this high-risk patient population.

    Article  PubMed  Google Scholar 

  32. Reddy VM. Low birth weight and very low birth weight neonates with congenital heart disease: timing of surgery, reasons for delaying or not delaying surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;16:13–20. https://doi.org/10.1053/j.pcsu.2013.01.004.

    Article  PubMed  Google Scholar 

  33. Aykanat A, Yavuz T, Özalkaya E, Topçuoğlu S, Ovalı F, Karatekin G. Long-term prostaglandin E1 infusion for newborns with critical congenital heart disease. Pediatr Cardiol. 2016;37:131–4. https://doi.org/10.1007/s00246-015-1251-0.

    Article  PubMed  Google Scholar 

  34. Ades A, Johnson BA, Berger S. Management of low birth weight infants with congenital heart disease. Clin Perinatol. 2005;32:999–1015, x-xi. https://doi.org/10.1016/j.clp.2005.09.001.

  35. Alsoufi B, et al. Low-weight infants are at increased mortality risk after palliative or corrective cardiac surgery. J Thorac Cardiovasc Surg. 2014;148:2508–2514 e2501. https://doi.org/10.1016/j.jtcvs.2014.07.047.

    Article  PubMed  Google Scholar 

  36. Wei D, Azen C, Bhombal S, Hastings L, Paquette L. Congenital heart disease in low-birth-weight infants: effects of small for gestational age (SGA) status and maturity on postoperative outcomes. Pediatr Cardiol. 2015;36:1–7. https://doi.org/10.1007/s00246-014-0954-y.

    Article  PubMed  Google Scholar 

  37. • Lu C, et al. Predictors of postoperative outcomes in infants with low birth weight undergoing congenital heart surgery: a retrospective observational study. Ther Clin Risk Manag. 2019;15:851–60. https://doi.org/10.2147/TCRM.S206147. This well-designed retrospective review utilizes a multiple logistic regression model to establish risk factors for extended length of hospital stay for infants born with low birth weight and undergoing congenital heart surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Best, K. E., Tennant, P. W. G. & Rankin, J. Survival, by birth weight and gestational age, in individuals with congenital heart disease: a population-based study. J Am Heart Assoc 6, https://doi.org/10.1161/JAHA.116.005213 (2017).

  39. Anderson AW, Smith PB, Corey KM, Hill KD, Zimmerman KO, Clark RH, et al. Clinical outcomes in very low birth weight infants with major congenital heart defects. Early Hum Dev. 2014;90:791–5. https://doi.org/10.1016/j.earlhumdev.2014.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kalfa D, et al. Outcomes of cardiac surgery in patients weighing <2.5 kg: affect of patient-dependent and -independent variables. J Thorac Cardiovasc Surg. 2014;148:2499–2506 e2491. https://doi.org/10.1016/j.jtcvs.2014.07.031.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hickey EJ, et al. Very low-birth-weight infants with congenital cardiac lesions: is there merit in delaying intervention to permit growth and maturation? J Thorac Cardiovasc Surg. 2012;143:126–36, 136 e121. https://doi.org/10.1016/j.jtcvs.2011.09.008.

  42. Shepard CW, Kochilas LK, Rosengart RM, Brearley AM, Bryant R 3rd, Moller JH, et al. Repair of major congenital cardiac defects in low-birth-weight infants: is delay warranted? J Thorac Cardiovasc Surg. 2010;140:1104–9. https://doi.org/10.1016/j.jtcvs.2010.08.013.

  43. Abrishamchian R, Kanhai D, Zwets E, Nie L, Cardarelli M. Low birth weight or diagnosis, which is a higher risk?—A meta-analysis of observational studies. Eur J Cardiothorac Surg. 2006;30:700–5. https://doi.org/10.1016/j.ejcts.2006.08.021.

    Article  PubMed  Google Scholar 

  44. Desai, J. et al. Surgical interventions in infants born preterm with congenital heart defects: an analysis of the Kids’ Inpatient Database. J Pediatr 191, 103–109 e104, doi:https://doi.org/10.1016/j.jpeds.2017.07.015 (2017).

  45. Kalfa D, Krishnamurthy G, Levasseur S, Najjar M, Chai P, Chen J, et al. Norwood stage I palliation in patients less than or equal to 2.5 kg: outcomes and risk analysis. Ann Thorac Surg. 2015;100:167–73. https://doi.org/10.1016/j.athoracsur.2015.03.088.

    Article  PubMed  Google Scholar 

  46. Kopf GS, Mello DM. Surgery for congenital heart disease in low-birth weight neonates: a comprehensive statewide Connecticut program to improve outcomes. Conn Med. 2003;67:327–32.

    PubMed  Google Scholar 

  47. Chang AC, Hanley FL, Lock JE, Castaneda AR, Wessel DL. Management and outcome of low birth weight neonates with congenital heart disease. J Pediatr. 1994;124:461–6. https://doi.org/10.1016/s0022-3476(94)70376-0.

    Article  CAS  PubMed  Google Scholar 

  48. Jennings E, Cuadrado A, Maher KO, Kogon B, Kirshbom PM, Simsic JM. Short-term outcomes in premature neonates adhering to the philosophy of supportive care allowing for weight gain and organ maturation prior to cardiac surgery. J Intensive Care Med. 2012;27:32–6. https://doi.org/10.1177/0885066610393662.

    Article  PubMed  Google Scholar 

  49. • Nwankwo UT, Morell EM, Trucco SM, Morell VO, Kreutzer J. Hybrid strategy for neonates with ductal-dependent systemic circulation at high risk for Norwood. Ann Thorac Surg. 2018;106:595–601. https://doi.org/10.1016/j.athoracsur.2018.03.007. This retrospective study provides evidence that hybrid strategies may play an emerging role in the palliation of infants with ductal-dependent systemic circulation, demonstrating that hybrid-treated patients weighing less than 2.6 kg had higher overall survival versus the Norwood procedure. While these results need further prospective, controlled validation, they offer supporting evidence for further discussion of this emerging technology as a feasible palliation strategy in high-risk infants.

    Article  PubMed  Google Scholar 

  50. Murphy MO, et al. Hybrid procedure for neonates with hypoplastic left heart syndrome at high-risk for Norwood: midterm outcomes. Ann Thorac Surg. 2015;100:2286–90; discussion 2291–2282. https://doi.org/10.1016/j.athoracsur.2015.06.098.

  51. Karani KB, Zafar F, Morales DL, Goldstein BH. Hybrid stage I palliation in a 1.1 kg, 28-week preterm neonate with posterior malalignment ventricular septal defect, left ventricular outflow tract obstruction, and coarctation of the aorta. World J Pediatr Congenit Heart Surg. 2014;5:603–7. https://doi.org/10.1177/2150135114535272.

    Article  PubMed  Google Scholar 

  52. Pizarro C, Kolcz J, Derby CD, Klenk D, Baffa JM, Radtke WA. Hard choices for high-risk patients with critical left ventricular outflow obstruction: contemporary comparison of hybrid versus surgical strategy. World J Pediatr Congenit Heart Surg. 2010;1:187–93. https://doi.org/10.1177/2150135110372532.

    Article  PubMed  Google Scholar 

  53. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr. 2008;153:807–13. https://doi.org/10.1016/j.jpeds.2008.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kecskes Z, Cartwright DW. Poor outcome of very low birthweight babies with serious congenital heart disease. Arch Dis Child Fetal Neonatal Ed. 2002;87:F31–3. https://doi.org/10.1136/fn.87.1.f31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bacha EA, et al. Surgery for coarctation of the aorta in infants weighing less than 2 kg. Ann Thorac Surg. 2001;71:1260–4. https://doi.org/10.1016/s0003-4975(00)02664-3.

    Article  CAS  PubMed  Google Scholar 

  56. Stegeman R, et al. Primary coronary stent implantation is a feasible bridging therapy to surgery in very low birth weight infants with critical aortic coarctation. Int J Cardiol. 2018;261:62–5. https://doi.org/10.1016/j.ijcard.2018.03.009.

    Article  PubMed  Google Scholar 

  57. Cools B, Meyns B, Gewillig M. Hybrid stenting of aortic coarctation in very low birth weight premature infant. Catheter Cardiovasc Interv. 2013;81:E195–8. https://doi.org/10.1002/ccd.24420.

    Article  PubMed  Google Scholar 

  58. Khodaghalian B, Subhedar NV, Chikermane A. Prostaglandin E 2 in a preterm infant with coarctation of the aorta. BMJ Case Rep. 2019;12. https://doi.org/10.1136/bcr-2019-230910.

  59. Acherman RJ, Siassi B, Pratti-Madrid G, Luna C, Lewis AB, Ebrahimi M, et al. Systemic to pulmonary collaterals in very low birth weight infants: color doppler detection of systemic to pulmonary connections during neonatal and early infancy period. Pediatrics. 2000;105:528–32. https://doi.org/10.1542/peds.105.3.528.

    Article  CAS  PubMed  Google Scholar 

  60. Hofferberth SC, et al. Pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals: collateral vessel disease burden and unifocalisation strategies. Cardiol Young. 2018;28:1091–8. https://doi.org/10.1017/S104795111800080X.

    Article  PubMed  Google Scholar 

  61. Mainwaring RD, Patrick WL, Roth SJ, Kamra K, Wise-Faberowski L, Palmon M, et al. Surgical algorithm and results for repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals. J Thorac Cardiovasc Surg. 2018;156:1194–204. https://doi.org/10.1016/j.jtcvs.2018.03.153.

    Article  PubMed  Google Scholar 

  62. Reddy VM, Liddicoat JR, Hanley FL. Midline one-stage complete unifocalization and repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals. J Thorac Cardiovasc Surg. 1995;109:832–44; discussion 844–835. https://doi.org/10.1016/S0022-5223(95)70305-5.

  63. Mainwaring RD, Reddy VM, Peng L, Kuan C, Palmon M, Hanley FL. Hemodynamic assessment after complete repair of pulmonary atresia with major aortopulmonary collaterals. Ann Thorac Surg. 2013;95:1397–402. https://doi.org/10.1016/j.athoracsur.2012.12.066.

    Article  PubMed  Google Scholar 

  64. Mercer-Rosa L, et al. Predictors of length of hospital stay after complete repair for tetralogy of Fallot: a prospective cohort study. J Am Heart Assoc. 2018;7. https://doi.org/10.1161/JAHA.118.008719.

  65. Pigula FA, Khalil PN, Mayer JE, del Nido PJ, Jonas RA. Repair of tetralogy of Fallot in neonates and young infants. Circulation. 1999;100:II157–61. https://doi.org/10.1161/01.cir.100.suppl_2.ii-157.

    Article  CAS  PubMed  Google Scholar 

  66. Atz AM, Travison TG, Williams IA, Pearson GD, Laussen PC, Mahle WT, et al. Prenatal diagnosis and risk factors for preoperative death in neonates with single right ventricle and systemic outflow obstruction: screening data from the Pediatric Heart Network Single Ventricle Reconstruction Trial( *). J Thorac Cardiovasc Surg. 2010;140:1245–50. https://doi.org/10.1016/j.jtcvs.2010.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stasik CN, et al. Current outcomes and risk factors for the Norwood procedure. J Thorac Cardiovasc Surg. 2006;131:412–7. https://doi.org/10.1016/j.jtcvs.2005.09.030.

    Article  PubMed  Google Scholar 

  68. Ades AM, Dominguez TE, Nicolson SC, Gaynor JW, Spray TL, Wernovsky G, et al. Morbidity and mortality after surgery for congenital cardiac disease in the infant born with low weight. Cardiol Young. 2010;20:8–17. https://doi.org/10.1017/S1047951109991909.

    Article  PubMed  Google Scholar 

  69. Gelehrter S, Fifer CG, Armstrong A, Hirsch J, Gajarski R. Outcomes of hypoplastic left heart syndrome in low-birth-weight patients. Pediatr Cardiol. 2011;32:1175–81. https://doi.org/10.1007/s00246-011-0053-2.

    Article  PubMed  Google Scholar 

  70. Taqatqa A, Diab KA, Stuart C, Fogg L, Ilbawi M, Awad S, et al. Extended application of the hybrid procedure in neonates with left-sided obstructive lesions in an evolving cardiac program. Pediatr Cardiol. 2016;37:465–71. https://doi.org/10.1007/s00246-015-1301-7.

    Article  PubMed  Google Scholar 

  71. Dodge-Khatami A, et al. Achieving benchmark results for neonatal palliation of hypoplastic left heart syndrome and related anomalies in an emerging program. World J Pediatr Congenit Heart Surg. 2015;6:393–400. https://doi.org/10.1177/2150135115589605.

    Article  PubMed  Google Scholar 

  72. Davies RR, Radtke W, Bhat MA, Baffa JM, Woodford E, Pizarro C. Hybrid palliation for critical systemic outflow obstruction: neither rapid stage 1 Norwood nor comprehensive stage 2 mitigate consequences of early risk factors. J Thorac Cardiovasc Surg. 2015;149:182–91. https://doi.org/10.1016/j.jtcvs.2014.09.030.

    Article  PubMed  Google Scholar 

  73. Evans CF, et al. Interstage weight gain is associated with survival after first-stage single-ventricle palliation. Ann Thorac Surg. 2017;104:674–80. https://doi.org/10.1016/j.athoracsur.2016.12.031.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Michaelsson M, Engle MA. Congenital complete heart block: an international study of the natural history. Cardiovasc Clin. 1972;4:85–101.

    CAS  PubMed  Google Scholar 

  75. Costedoat-Chalumeau N, Georgin-Lavialle S, Amoura Z, Piette JC. Anti-SSA/Ro and anti-SSB/La antibody-mediated congenital heart block. Lupus. 2005;14:660–4. https://doi.org/10.1191/0961203305lu2195oa.

    Article  CAS  PubMed  Google Scholar 

  76. Epstein AE, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;51:e1–62. https://doi.org/10.1016/j.jacc.2008.02.032.

    Article  PubMed  Google Scholar 

  77. Nakanishi K, Takahashi K, Kawasaki S, Fukunaga H, Amano A. Management of congenital complete heart block in a low-birth-weight infant. J Card Surg. 2016;31:645–7. https://doi.org/10.1111/jocs.12824.

    Article  PubMed  Google Scholar 

  78. Pawade A, Waterson K, Laussen P, Karl TR, Mee RB. Cardiopulmonary bypass in neonates weighing less than 2.5 kg: analysis of the risk factors for early and late mortality. J Card Surg. 1993;8:1–8. https://doi.org/10.1111/j.1540-8191.1993.tb00570.x.

    Article  CAS  PubMed  Google Scholar 

  79. Reddy VM, McElhinney D, Sagrado T, Parry AJ, Teitel DF, Hanley FL. Results of 102 cases of complete repair of congenital heart defects in patients weighing 700 to 2500 grams. J Thorac Cardiovasc Surg. 1999;117:324–31. https://doi.org/10.1016/S0022-5223(99)70430-7.

    Article  CAS  PubMed  Google Scholar 

  80. Wien MA, et al. Patterns of brain injury in newborns treated with extracorporeal membrane oxygenation. AJNR Am J Neuroradiol. 2017;38:820–6. https://doi.org/10.3174/ajnr.A5092.

    Article  CAS  PubMed  Google Scholar 

  81. MacDorman MF, Minino AM, Strobino DM, Guyer B. Annual summary of vital statistics--2001. Pediatrics. 2002;110:1037–52. https://doi.org/10.1542/peds.110.6.1037.

    Article  PubMed  Google Scholar 

  82. Rogowski JA, Staiger DO, Horbar JD. Variations in the quality of care for very-low-birthweight infants: implications for policy. Health Aff (Millwood). 2004;23:88–97. https://doi.org/10.1377/hlthaff.23.5.88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Stone MD PhD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology/CT Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venardos, N., Stone, M.L. Surgical Considerations and Management Options in Premature and Very Low Birth Weight Infants With Complex Congenital Heart Disease. Curr Treat Options Peds 6, 78–90 (2020). https://doi.org/10.1007/s40746-020-00191-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-020-00191-7

Keywords

Navigation